¿Qué diferencia a la astronomía de otras ciencias?

Normalmente pensamos que lo nuestro es lo mejor y lo más importante. Sobre todo cuando nos da de comer, por lo que queremos que lo nuestro sea lo más importante y así haya más dinero para que podamos “comer” más.

No voy a decir que la astronomía es la mejor rama de la ciencia y la más importante. Pero sí voy a decir que la astronomía es, en algunos aspectos, muy diferente a otras ramas de la ciencia.

purity

La ciencia se basa en una mezcla de desarrollos teóricos y experimentales. Unas veces la teoría va antes que la experimentación y otras veces es al revés. Se puede crear una teoría que explique algo y después reproducir en un laboratorio las condiciones que puedan probar lo que dice la teoría o al revés. Cuando estas condiciones se reproducen en un laboratorio es factible poder reproducirlas no sólo una vez, sino varias veces hasta conseguir un resultado que sea estadísticamente significativo.

En astronomía eso no pasa frecuentemente. Ni siquiera unas pocas veces.

La astronomía es una ciencia observacional. Esto implica que para poder decir algo sobre el comportamiento del universo en general o un objeto celeste en particular tenemos que observarlo. Y ahí surge el problema. No podemos ir a una galaxia lejana, prepararla de manera que podamos comprobar nuestra teoría, medir y luego volver a prepararla para repetir la medida.

Cuando observamos nos tenemos que aguantar y medir lo que la galaxia nos está ofreciendo en ese momento – o mejor dicho, en el momento en el que la luz que medimos salió de esa galaxia porque puede que en la actualidad, en esa galaxia, sea todo muy diferente. Si en ese determinado momento no podemos conseguir toda la información que queremos, tendremos que volver a observar en otro momento (dependiendo del tiempo de observación que tengamos en el instrumento que estamos usando) y volver a medir. En este momento puede que las condiciones hayan cambiado y lo que queremos observar haya cambiado.

Esto quiere decir que la astronomía trabaja con lo que el universo le da. No podemos pedirle que nos muestre algo que queremos estudiar ni esperar a que nos lo muestre, ya que podría ser que ese algo nunca ocurriera durante nuestra vida.

Pero la astronomía también es diferente en otros aspectos. Aunque no en todas, en muchas ramas de la ciencia podemos tocar, pesar, medir y hacer mil cosas con el montaje experimental para obtener resultados. En astronomía sólo disponemos detectar la luz que nos llega. Es cierto que con esa luz podemos medir (por ejemplo el tamaño de una galaxia), pesar (o mejor dicho determinar la masa de una estrella) y hacer mil cosas con esa luz (como saber cuál es el campo magnético del objeto que estamos observando o incluso ¡determinar la cantidad de materia oscura que hay en algún lugar!), pero no disponemos de nada más, aparte de la luz.

Además, la astronomía necesita de otras ramas de la ciencia para entender la luz que nos llega: química, biología e incluso geología… pero precisamente por esa limitación que existe con respecto a la información que recibimos a través de la luz, la astronomía no es capaz de ser muy precisa en cuanto al uso que hace de esas otras ramas.

Si hablamos de la química, la polémica está servida. El hidrógeno y el helio son gases a temperatura ambiente, como también lo es el oxígeno. El hierro es un metal, pero también lo es el plomo. Sin embargo, se estima que el 74% de la materia ordinaria del universo (olvidémonos de la materia y energía oscura) es hidrógeno y el 24% es helio, así que sólo el 2% restante es todo lo demás, es decir, todos los elementos de la tabla periódica. Debido a esa abundancia escasa de elementos más pesados que el hidrógeno y helio, los astrónomos denominan a todos esos elementos más pesados “metales”, aunque se puedan detectar fácilmente a través de espectroscopía. Es común, cuando se habla del contenido de material de una estrella, hablar de metalicidad.

Más llamativo, cosa que molesta a los químicos con razón, es como se representa la metalicidad (o más correctamente el índice de metalicidad). Todos sabemos que el hierro es un metal y se representa por el símbolo Fe. Como todo lo que no es hidrógeno y helio se considera un metal, los astrónomos utilizan el símbolo [Fe/H] para representar el logaritmo del cociente entre la abundancia de metales en una estrella y la abundancia solar. Se toma como referencia el Sol por ser una estrella que conocemos bien. En el caso del sol [Fe/H]=0.

Por otro lado, en los últimos años se están descubriendo multitud de planetas extrasolares y se especula mucho sobre la potencial capacidad de éstos para albergar vida. Aquí la astronomía se une a la biología para, cuando se descubre un exoplaneta, decir si es potencialmente habitable o no. El problema es que, salvo en poquísimas ocasiones, el planeta no es observable directamente, y eso no quiere decir que podamos observar su superficie y decir si hay vida en ella o no. Los astrónomos hablan de la zona de habitabilidad alrededor de una estrella. En esa zona, según la temperatura de la estrella, se puede hablar de la posible existencia de agua líquida, que desde el punto de vista de la biología es fundamental para la vida, ya que es uno de los mejores disolventes que existen.

Sin embargo, el hecho de que un planeta esté en la zona de habitabilidad no implica que exista vida en su superficie, ni que sea habitable por los humanos (como es el caso de Marte en el sistema solar, salvo que hagamos un proceso de terraformación) ni que exista agua en estado líquido permanente (pueden existir acoplamientos de marea entre el planeta y la estrella que hagan que una cara del planeta esté siempre de cara a la estrella, evaporándose el agua, y la otra nunca reciba luz, congelándose). Aunque la astronomía usa el concepto biológico de que el agua es fundamental para la vida tal y como la conocemos, la falta de información que tenemos en la luz que recibimos, hace que se tenga que hacer un uso parcial de la biología en la astronomía.

En resumen, la astronomía no será la rama de la ciencia más importante de todas, pero sí que es algo diferente y, como todas las ramas de la ciencia, necesita de otras disciplinas para poder realizarse, aunque a veces el uso que se hace de esas otras disciplinas no sea del todo estricto…

Referencias

Metalicidad en Wikipedia.

Un punto rojo pálido: a vueltas con la habitabilidad de Próxima b

Cómo encontrar vida en otros planetas

La búsqueda de vida fuera de nuestro planeta siempre ha fascinado a la humanidad, quizá por el hecho de que, dada la inmensidad del universo, no nos creamos que nosotros seamos la única forma de vida que existe y, mucho menos, la única forma de vida inteligente.

Desde que en 1959 se pusiera en marcha el proyecto SETI (Search for Extraterrestrial Intelligence) para investigar posibles señales de radio emitidas por vida inteligente en otros lugares de nuestra galaxia y del universo, usando radiotelescopios, aparte de la señal WOW! que todavía está por analizar, no hemos conseguido encontrar vida más allá de la tierra.

Sin embargo, la vida puede tomar muchas formas, desde simples bacterias hasta civilizaciones avanzadas capaces de desarrollar tecnología e incluso auto destruirse.

En los últimos años hemos detectado muchos planetas, algunos de los cuales son similares a la tierra, que podrían por tanto albergar vida, y otros cuyas condiciones son desfavorables para ello. Las condiciones para albergar vida son muy variadas y dependen de factores como el tipo de estrella, cuando se formó, el lugar que ocupa en una determinada galaxia y muchos otros factores físicos y químicos que no vamos a tratar aquí por ahora.

Estos planetas están a distancias enormes, por lo que viajar hasta ellos para estudiar su composición y comprobar in situ la existencia de vida es imposible con las limitaciones tecnológicas que tenemos.

En cualquier caso, si podemos obtener medidas de la atmósfera de un planeta a través de los instrumentos de los que disponemos (telescopios en la tierra y en órbita con los equipos adecuados para analizar la luz que nos llega), podríamos llegar a establecer la posible existencia de algún tipo de vida en esos planetas.

Kepler-186f

Impresión artística de planeta Kepler-186f (Fuente: Microsiervos)

La atmósfera de un planeta está muy ligada a la vida. Pensemos por ejemplo en la evolución de la atmósfera en la tierra.

La tierra se formó de forma paralela al Sol. Los átomos y moléculas que formaban el disco protoplanetario alrededor del Sol se unían colisionando unos con otros. A medida que se formaban estructuras mayores, la gravedad aumentaba por lo que más átomos y moléculas se agrupaban para seguir creciendo. Algunas moléculas, como las de los gases, no llegaban a formar parte de la superficie del protoplaneta pero quedaban atrapadas por la fuerza de la gravedad formando una tenue atmósfera.

Cuando el Sol completó su formación y empezó a fusionar el hidrógeno en su núcleo, la energía emitida creó una onda de choque en el espacio que hizo que esa atmósfera primitiva saliera despedida y las moléculas que la formaban se dispersaran por el espacio. En este punto, la tierra ya estaba formada y por lo tanto existían reacciones químicas en su interior cuyo resultado es la formación de moléculas gaseosas. También, debido al calor interno de la tierra, se formaron volcanes que emitían gases al exterior. Estos gases quedaban atrapados por la gravedad alrededor de la tierra, dando lugar a una segunda atmósfera. Muchas de estas moléculas forman parte de estructuras biológicas, por lo que si se dan las condiciones físicas y químicas adecuadas (como es obvio que se dieron la tierra), puede surgir la vida.

Pero la vida también modifica la composición de la atmósfera. Por ejemplo, esta segunda atmósfera no contendría oxígeno, sino que fueron los microorganismos primitivos que se formaron los empezaron a realizar la fotosíntesis y a generar el oxígeno que respiramos hoy en día. Otro ejemplo es, en una civilización avanzada como la nuestra, la emisión de gases de efecto invernadero a través de actividades industriales.

Por lo tanto, si conseguimos observar la atmósfera de un planeta y determinamos que la atmósfera está en el equilibrio químico, será una primera prueba de que ese planeta no contiene vida ya que, como observamos en la tierra, las concentraciones de los gases no se corresponden con las de equilibrio químico. Al contrario, si no medimos ese equilibrio químico podríamos llegar demostrar la posibilidad de que en ese planeta haya vida.

Con la ayuda de la ciencia podemos satisfacer nuestra curiosidad por determinar si estamos solos en el universo.

Y puede que algún día desarrollemos la tecnología necesaria para vencer las limitaciones que tenemos e ir a visitar a nuestros vecinos…

Referencias

Materia y materialismo. David Jou. Ediciones de Pasado y Presente. 2015

Química (inter)estelar

Cuando queremos conocer la composición de cualquier material, lo primero que necesitamos es, obviamente, tener a mano una cierta cantidad del material a estudiar. Una vez lo hemos conseguido recurrimos a ese área del conocimiento científico, a veces odiada injustamente por muchos estudiantes, que es la química. La química es, como la definió Linus Pauling, la ciencia que estudia las sustancias, su estructura, sus propiedades y las reacciones que las transforman en otras sustancias.

Dentro de la química, existe una rama encargada de decirnos cuál es la composición química de la sustancia que queremos estudiar. La química analítica. Para lograr su objetivo, la química analítica utiliza diversos métodos que por su naturaleza pueden ser métodos puramente químicos, basados en las reacciones que unas sustancias tienen en presencia de otras, o fisicoquímicos que dependen de cómo unas sustancias interactúan físicamente con otras.

Ahora bien, ¿cómo hacemos para estudiar la composición química de algo de lo que no tenemos a mano ninguna cantidad del material que queremos estudiar? Esta es la situación que se da, sin excepción, cuando queremos conocer la composición de las estrellas o del medio interestelar. Podría parecer imposible pero lo que está claro es que conocemos, cada vez mejor, la composición de las estrellas y del medio interestelar. Como prueba, recientemente se ha buscado mercaptano de etilo (CH3CH2SH) en la región de formación de estrellas masivas Kleinmann-Low en la nube molecular de Orión. Puedes ver una magnífica explicación a nivel de divulgación aquí y el artículo técnico aquí.

orionkl_subaru

Región Kleinmann-Low en la nebulosa de Orión (Fuente: NASA APOD, CISCO, Subaru 8.3 m telescope, NAOJ)

¿Cómo lo hacemos entonces? Necesitamos recurrir a varias ramas de la ciencia, entre las que encontramos química (analítica), la astrofísica y astronomía(en concreto la instrumentación astronómica).

Antes hemos dicho que la química analítica es la encargada de estudiar la composición química y que para ello utiliza diferentes métodos. Uno de ellos es el método espectrométrico, el cual consiste en estudiar la interacción de la radiación electromagnética (en todas las longitudes de onda del espectro electromagnético) con la materia sobre la cual incide. La espectrometría utiliza espectrómetros (que también son conocidos como espectroscopios o espectrógrafos) que son unos dispositivos que separan la luz en las longitudes de onda que los componen. El espectroscopio más sencillo que existe (y en cuyo principio funcional se basan todos los demás) es un simple prisma. Utilizando un prisma Newton consiguió descomponer la luz blanca del sol que incidía sobre el prisma en todos los colores que la componían, obteniendo así el primer espectro de la historia. Sin embargo, fueron Kirchhoff y Bunsen los que inventaron el primer espectroscopio al añadir una escala graduada que permitía identificar la longitud de las líneas espectrales que se observaban al hacer pasar la luz por el prisma. Cuando la imagen se registra sobre un dispositivo, ya sea electrónico o una película fotográfica, solemos hablar de espectrógrafo.

Las sustancias químicas se pueden encontrar en forma atómica o forma molecular. En la primera, los átomos individuales no se encuentran unidos a otros átomos, en la segunda los átomos se encuentran unidos entre sí, a través de enlaces que pueden ser entre átomos del mismo elemento o de distinto tipo, dando lugar a moléculas. Los electrones que forman los átomos, o que se unen entre dos átomos para formar la molécula, pueden estar en diferentes estados energéticos. Si sobre ellos no incide ningún tipo de radiación (ya sea de la longitud de onda que sea), los electrones se encuentran en el estado más bajo de energía. Cuando la radiación incide sobre ellos, los electrones saltan a un estado de mayor energía. Sin embargo, debido a que los electrones tienen tendencia a estar en su estado de menor energía, una vez la radiación ha dejado de incidir vuelven a su estado de energía más bajo o fundamental y para ello tienen que liberarse del exceso de energía que le había proporcionado la radiación incidente, emitiendo por ello ese exceso de energía en forma de radiación. La diferencia entre la energía del nivel inicial y el nivel final nos da la longitud de onda de la radiación emitida.

Cada átomo o molécula tiene unos niveles de energía diferentes que los caracterizan, por lo que dependiendo de la energía incidente las transiciones entre niveles serán diferentes y por lo tanto la radiación emitida será también diferente. Estos niveles de energía pueden ser de diferentes tipos e incluyen niveles vibracionales (debidos a la vibración del átomo o molécula) o niveles rotacionales (debidos a la rotación del átomo o molécula). Por otro lado, cada nivel de energía puede no ser único, sino que en presencia, por ejemplo, de un campo magnético desdoblarse en varios niveles, que permiten transiciones adicionales y por lo tanto la posibilidad de emisión del exceso de radiación en longitudes de onda adicionales.

image014 Transiciones entre niveles de energía que dan lugar a los espectros (Fuente: monografías.com)

Los químicos analíticos cuando intentan determinar que sustancia tienen entre manos, estudian utilizando, entre otros métodos, el método espectrométrico la estructura de estos átomos o moléculas y su interacción con la radiación. Debido a que cada átomo y molécula tiene una estructura de niveles de energía determinada y distinta del resto, y que interactúa con la radiación de una manera determinada según el tipo de radiación (y las condiciones del entorno, como por ejemplo en presencia de campos magnéticos) se puede crear un catálogo de espectros para que cada vez que nos volvamos a encontrar con el mismo espectro en otro lugar, podamos decir que sustancia tenemos entre manos.

Ese otro lugar en el que nos podemos encontrar los espectros son las estrellas y el medio interestelar. El problema que nos encontramos es que no podemos acceder directamente para tomar una muestra y llevarla al laboratorio para estudiarla. Lo que si podemos hacer es utilizar nuestros telescopios ya sea ópticos o de radio, equiparlos con espectrógrafos que nos permitan observar los espectros, en los que los sensores han de ser adecuados para la radiación que queremos medir y apuntarlos hacia la región del cielo que queremos estudiar. El análisis de los espectros a través de su comparación con los espectros obtenidos en los laboratorios nos dirá la composición química de nuestro objeto de estudio. Y no sólo eso, vamos a obtener mucha más información como las velocidades de rotación y de traslación que tiene el objeto que estamos estudiando (a través de medidas de efecto Doppler, ya que las líneas espectrales aparecerán desplazadas, con respecto a su posición en el laboratorio, hacia longitudes de onda más largas o más cortas dependiendo de si se aleja o se acerca de nosotros) o incluso de la intensidad del campo magnético que pueda existir en la región de estudio.

Cómo en todo, la realidad es siempre mucho más compleja, pero siempre podemos confiar en el ingenio humano y en la capacidad de los científicos para buscar soluciones a los problemas que les plantea el universo. Y como se ha visto, lo que para mí más importante, se puede confiar en la colaboración de diferentes áreas de la ciencia para buscar esas soluciones, en algunos casos, surgiendo a raíz de esa colaboración nuevas áreas de investigación como es el caso de la Astroquímica que fundamentalmente es de lo que se ha tratado aquí.

Referencias:

http://www.espectrometria.com/