¿Qué diferencia a la astronomía de otras ciencias?

Normalmente pensamos que lo nuestro es lo mejor y lo más importante. Sobre todo cuando nos da de comer, por lo que queremos que lo nuestro sea lo más importante y así haya más dinero para que podamos “comer” más.

No voy a decir que la astronomía es la mejor rama de la ciencia y la más importante. Pero sí voy a decir que la astronomía es, en algunos aspectos, muy diferente a otras ramas de la ciencia.

purity

La ciencia se basa en una mezcla de desarrollos teóricos y experimentales. Unas veces la teoría va antes que la experimentación y otras veces es al revés. Se puede crear una teoría que explique algo y después reproducir en un laboratorio las condiciones que puedan probar lo que dice la teoría o al revés. Cuando estas condiciones se reproducen en un laboratorio es factible poder reproducirlas no sólo una vez, sino varias veces hasta conseguir un resultado que sea estadísticamente significativo.

En astronomía eso no pasa frecuentemente. Ni siquiera unas pocas veces.

La astronomía es una ciencia observacional. Esto implica que para poder decir algo sobre el comportamiento del universo en general o un objeto celeste en particular tenemos que observarlo. Y ahí surge el problema. No podemos ir a una galaxia lejana, prepararla de manera que podamos comprobar nuestra teoría, medir y luego volver a prepararla para repetir la medida.

Cuando observamos nos tenemos que aguantar y medir lo que la galaxia nos está ofreciendo en ese momento – o mejor dicho, en el momento en el que la luz que medimos salió de esa galaxia porque puede que en la actualidad, en esa galaxia, sea todo muy diferente. Si en ese determinado momento no podemos conseguir toda la información que queremos, tendremos que volver a observar en otro momento (dependiendo del tiempo de observación que tengamos en el instrumento que estamos usando) y volver a medir. En este momento puede que las condiciones hayan cambiado y lo que queremos observar haya cambiado.

Esto quiere decir que la astronomía trabaja con lo que el universo le da. No podemos pedirle que nos muestre algo que queremos estudiar ni esperar a que nos lo muestre, ya que podría ser que ese algo nunca ocurriera durante nuestra vida.

Pero la astronomía también es diferente en otros aspectos. Aunque no en todas, en muchas ramas de la ciencia podemos tocar, pesar, medir y hacer mil cosas con el montaje experimental para obtener resultados. En astronomía sólo disponemos detectar la luz que nos llega. Es cierto que con esa luz podemos medir (por ejemplo el tamaño de una galaxia), pesar (o mejor dicho determinar la masa de una estrella) y hacer mil cosas con esa luz (como saber cuál es el campo magnético del objeto que estamos observando o incluso ¡determinar la cantidad de materia oscura que hay en algún lugar!), pero no disponemos de nada más, aparte de la luz.

Además, la astronomía necesita de otras ramas de la ciencia para entender la luz que nos llega: química, biología e incluso geología… pero precisamente por esa limitación que existe con respecto a la información que recibimos a través de la luz, la astronomía no es capaz de ser muy precisa en cuanto al uso que hace de esas otras ramas.

Si hablamos de la química, la polémica está servida. El hidrógeno y el helio son gases a temperatura ambiente, como también lo es el oxígeno. El hierro es un metal, pero también lo es el plomo. Sin embargo, se estima que el 74% de la materia ordinaria del universo (olvidémonos de la materia y energía oscura) es hidrógeno y el 24% es helio, así que sólo el 2% restante es todo lo demás, es decir, todos los elementos de la tabla periódica. Debido a esa abundancia escasa de elementos más pesados que el hidrógeno y helio, los astrónomos denominan a todos esos elementos más pesados “metales”, aunque se puedan detectar fácilmente a través de espectroscopía. Es común, cuando se habla del contenido de material de una estrella, hablar de metalicidad.

Más llamativo, cosa que molesta a los químicos con razón, es como se representa la metalicidad (o más correctamente el índice de metalicidad). Todos sabemos que el hierro es un metal y se representa por el símbolo Fe. Como todo lo que no es hidrógeno y helio se considera un metal, los astrónomos utilizan el símbolo [Fe/H] para representar el logaritmo del cociente entre la abundancia de metales en una estrella y la abundancia solar. Se toma como referencia el Sol por ser una estrella que conocemos bien. En el caso del sol [Fe/H]=0.

Por otro lado, en los últimos años se están descubriendo multitud de planetas extrasolares y se especula mucho sobre la potencial capacidad de éstos para albergar vida. Aquí la astronomía se une a la biología para, cuando se descubre un exoplaneta, decir si es potencialmente habitable o no. El problema es que, salvo en poquísimas ocasiones, el planeta no es observable directamente, y eso no quiere decir que podamos observar su superficie y decir si hay vida en ella o no. Los astrónomos hablan de la zona de habitabilidad alrededor de una estrella. En esa zona, según la temperatura de la estrella, se puede hablar de la posible existencia de agua líquida, que desde el punto de vista de la biología es fundamental para la vida, ya que es uno de los mejores disolventes que existen.

Sin embargo, el hecho de que un planeta esté en la zona de habitabilidad no implica que exista vida en su superficie, ni que sea habitable por los humanos (como es el caso de Marte en el sistema solar, salvo que hagamos un proceso de terraformación) ni que exista agua en estado líquido permanente (pueden existir acoplamientos de marea entre el planeta y la estrella que hagan que una cara del planeta esté siempre de cara a la estrella, evaporándose el agua, y la otra nunca reciba luz, congelándose). Aunque la astronomía usa el concepto biológico de que el agua es fundamental para la vida tal y como la conocemos, la falta de información que tenemos en la luz que recibimos, hace que se tenga que hacer un uso parcial de la biología en la astronomía.

En resumen, la astronomía no será la rama de la ciencia más importante de todas, pero sí que es algo diferente y, como todas las ramas de la ciencia, necesita de otras disciplinas para poder realizarse, aunque a veces el uso que se hace de esas otras disciplinas no sea del todo estricto…

Referencias

Metalicidad en Wikipedia.

Un punto rojo pálido: a vueltas con la habitabilidad de Próxima b

Anuncios

Galaxias, distancias y la expansión del Universo

Cuando miramos al cielo en una noche oscura, lejos de las luces de la ciudad, podemos ver tantas estrellas que nos podemos llegar a sentir abrumados por la cantidad. Cuando miramos a determinadas zonas del cielo, podemos llegar a ver una banda casi continua de polvo, parecida al rastro que dejaría alguien que fuera derramando una botella de leche. Ese rastro de leche es nuestra Galaxia, la Vía Láctea. Sin embargo, la Vía Láctea no abarca todo lo que existe, el Universo se extiende más allá de nuestro hogar galáctico.

La Vía Láctea es una de entre las cientos de miles de millones de galaxias que nos acompañan, cada una de las cuales es un enorme conjunto de sistemas estelares por derecho propio.

Desde la Tierra, a simple vista y dependiendo de la región del cielo que estemos observando, podemos ver fácilmente tres galaxias. Es el Grupo Local, que incluye la Vía Láctea, la Gran Nube de Magallanes y la Pequeña Nube de Magallanes. El tercer miembro del trío es la galaxia de Andrómeda en la constelación homónima.

Imagen guardada con los ajustes integrados.

Las nubes de Magallanes y la Vía Láctea

En el siglo XVIII, el francés Charles Messier, que era un cazador de cometas, escrutaba el cielo con su telescopio (de menos de 20 cm de diámetro) hasta que observaba una mancha borrosa. Cuando encontraba alguna, anotaba su posición en un mapa estelar de la época. A la noche siguiente volvía a apuntar el telescopio al mismo sitio para ver si la mancha seguía allí. Si se había movido era un cometa, si no, era otra cosa. En esa época,  estas manchas eran conocidas como nebulosas, palabra que deriva del latín y que significa “niebla” o “nube”. En 1774, Messier había catalogado 45 junto con sus coordenadas celestes y en 1784 su catálogo ya incluía 103 objetos.

Un músico de origen alemán, William Herschel, que dedicó la segunda mitad de su vida a construir grandes telescopios, junto con su hermana Caroline, apuntó sus instrumentos hacia los objetos que había descubierto Messier y dada la “potencia” de su telescopio (4 veces mayor que el de Messier) llegó a descubrir en siete años hasta 2000 objetos.

Con este catálogo, Herschel intentó construir un mapa celeste que incluyera todos estos objetos. Del estudio de las nebulosas, Herschel propuso que si la Vía Láctea se observara desde una distancia suficientemente grande, ésta parecería una nebulosa en si misma.

Al ser la potencia del telescopio de Herschel mayor que la del de Messier, éste pudo resolver las manchas borrosas en cúmulos de estrellas, algunos de los cuales pasaron a denominarse cúmulos globulares. En la década de 1840, William Parsons empezó a construir un telescopio de 16 m de largo con un espejo de 2 m de diámetro que superaba en tamaño al mayor de Herschel.

Parsons dirigió su telescopio hacia uno de los objetos del catálogo de Messier, en concreto M51, y su sorpresa fue inmensa cuando vio una estructura espiral, que más tarde recibiría el nombre de galaxia del Remolino debido a esta característica. No pudo distinguir estrellas individuales en su interior, pero descubrió otras nebulosas con la misma forma espiral.

Processed with MaxIm DL

M51. Galaxia del Remolino

Llegados a este punto surgió la pregunta: ¿pertenecían estas nebulosas a la Vía Láctea? Para responderla sería necesario saber el tamaño de la Vía Láctea y la distancia a las nebulosas.

Poco antes de este descubrimiento, los astrónomos ya conocían el método de la paralaje para medir distancias a estrellas cercanas, pero debido a las distancias enormes a las que se encontraban las nebulosas este método no era de gran utilidad. Tras el desarrollo inicial de las técnicas en espectroscopia, el astrónomo inglés William Huggins apuntó en 1867 su telescopio equipado con un espectroscopio a la estrella más brillante a simple vista, Sirio y aplicando la teoría del efecto Doppler desarrollada por el austriaco Christian Doppler 20 años antes encontró un ligero desplazamiento al rojo en las líneas espectrales de la estrella. Calculó que se alejaba a unos 50 km/s en la línea de observación. Asimismo, calculó la velocidad de recesión o aproximación de un gran número de estrellas. Fue sólo el comienzo del uso de la técnica del efecto Doppler en las medidas astronómicas. Años más tarde se encontraría la manera de emplear este método para el cálculo de distancias.

A principios del siglo XX, el observatorio del Harvard College realizaba tediosas observaciones estelares a partir de placas fotográficas y espectroscópicas. El trabajo era realizado por mujeres, las cuales, eran consideradas en aquella época, en un alarde de machismo, más idóneas para el trabajo pesado y repetitivo de medir y realizar  los cálculos, además de cobrar menos que los hombres. Muchas de estas mujeres realizaron contribuciones importantes, pero entre todas ellas destacó Henrietta Swan Leavitt.

Leavitt

Henrietta Swan Leavitt

En una serie de placas fotográficas de la Pequeña Nube de Magallanes, Leavitt observó multitud de estrellas que variaban su brillo periódicamente debido a que “pulsan”, es decir, se expanden y se contraen regularmente. Estas estrellas son conocidas como variables cefeidas, ya que la primera que se descubrió lleva el nombre de Delta Cefeo en la constelación del mismo nombre.

Leavitt compiló más de mil variables en la Pequeña Nube de Magallanes y al menos 16 aparecían en varias placas fotográficas, lo cual le permitió calcular sus periodos. Descubrió que las estrellas eran más brillantes cuanto más largos eran sus periodos y determinó que el periodo y el brillo máximo estaban relacionados y que se podía establecer gráficamente la relación entre periodo y luminosidad, es decir, Leavitt había relacionado la magnitud aparente de las estrellas variables con una medida que no dependía de la distancia a la estrella: el cambio de brillo. Leavitt había descubierto una conexión entre el periodo y su magnitud absoluta, es decir, su magnitud real.

Al estar estas estrellas en la misma región de la Pequeña Nube de Magallanes se podía asumir que estaban todas a casi la misma distancia de la Tierra.

La diferencia entre magnitud absoluta de las cefeidas de la Pequeña Nube de Magallanes y su magnitud aparente se podría usar entonces para calcular la distancia a la estrella usando la ley del cuadrado inverso: Una estrella, como cualquier fuente de luz, mostrará sólo una cuarta parte de su brillo si se dobla su distancia al observador, una dieciseisava parte si se cuadruplica, etc.

Como la relación que descubrió Leavitt se aplica a las cefeidas en general, el hecho de poder determinar la magnitud absoluta de una permitiría deducir la magnitud absoluta de las demás y se podría usar la escala periodo-luminosidad para hallar la magnitud absoluta de cualquier estrella variable del tipo cefeida, y con ella la distancia a la estrella.

El problema era crear un patrón de distancias a partir del comportamiento de las cefeidas ya que la cefeida más cercana era demasiado  lejana como para medir su distancia con el método de la paralaje.

Leavitt fue apartada de sus tareas ya que el jefe del observatorio creía que su trabajo era recoger datos y no hacer cálculos, pero Ejnar Hertzsprung, en el observatorio cerca de Berlín, recogió el testigo.

Hertzsprung estudió los movimientos propios, movimientos en el espacio de la estrella y nuestro Sol, de trece cefeidas cercanas al sol y usando técnicas estadísticas calculó la distancia “media” para las cefeidas locales, así como una magnitud aparente “media”. Con estos valores pudo calcular una magnitud absoluta “media” para una cefeida de periodo “medio”.

Quizá fueran muchas “medias”, pero lo que Hertzsprung hizo a continuación fue elegir una cerfeida de la Pequeña Nube de Magallanes con el mismo periodo que su estrella “media”. Comparó el brillo fotográfico de la cefeida de la Nube con la magnitud absoluta que debía tener y calculó su distancia: 3000 años-luz. Esta distancia ponía a la Pequeña Nube de Magallanes en el interior de la Vía Láctea. Se cree que fue un error tipográfico y que la distancia debía ser de 30000 años-luz. Aún así esta distancia era muy inferior a la real.

¿Por qué esta discrepancia? En realidad se trató de un error experimental. Las cefeidas de la Pequeña Nube de Magallanes habían sido fotografiadas con placas sensibles a la luz azul, mientras que para las cefeidas locales se usaron placas sensibles a la luz roja. Esto daba una diferencia en el brillo aparente que hacía que las cefeidas de la Pequeña Nube de Magallanes parecieran más brillantes y por lo tanto más próximas.

El astrónomo norteamericano Harlow Shapley supo comprender el significado  astronómico que tenían las variables cefeidas. Trabajando en el observatorio de Monte Wilson en los Ángeles, con el telescopio de 1,5 m, Shapley estudió los cúmulos globulares y descubrió que también había cefeidas en ellos. Usando la técnica de Hertzsprung, y refinándola, determinó la distancia a los cúmulos que resultó ser de entre 50000 y 220000 años-luz. Se creía que los cúmulos formaban parte de la Vía Láctea, pero también se creía que la Vía Láctea tenía sólo unos 30000 años-luz de diámetro, por lo que el tamaño debía ser mayor que el que se pensaba. Shapley calculó un diámetro de 300000 años luz estando el centro de la Vía Láctea en la dirección de la constelación de Sagitario.

Los astrónomos tomaron este resultado con cautela, en parte porque consideraban todavía como poco fiable el método de Hertzsprung.

Al mismo tiempo se estaban apuntando los telescopios hacia las nebulosas espirales y muchos astrónomos sugirieron que eran galaxias comparables a la Vía Láctea repletas de estrellas ya que cuando la luz era pasada a través de un espectroscopio se parecía a la de las estrellas, no a la de una nube de gas.

En 1912, Vesto Slipher, en el observatorio Lowell observó detalladamente la galaxia espiral que se encontraba en la constelación de Andrómeda y pudo medir su desplazamiento Doppler. El valor que encontró sorprendió a todo el mundo: se estaba acercando a 300 km/s. Más adelante, Slipher observó otras 15 galaxias espirales más y descubrió que 13 de ellas se estaban alejando de la Tierra, incluso con velocidades superiores a la que se estaba acercando Andrómeda.

andromeda

M31. Galaxia de Andrómeda

En 1919, después de haber recibido formación como abogado y tras realizar un doctorado en astronomía y volver de la guerra, Edwin Hubble empezó a tratar de clasificar las nebulosas. Utilizando el nuevo telescopio de 2,5 m de Monte Wilson, esperaba resolver estrellas en las galaxias espirales, en concreto en Andrómeda. Hubble centró su atención en unos puntos de luz conocidos como novas, estrellas que sufren erupciones recurrentes de materia que hace que cambien su luminosidad (no confundir con supernovas que es la explosión de las estrellas completas).

A través de la comparación de placas fotográficas que mostraban la misma zona del cielo, lo que inicialmente creyó que era una nova, se dio cuenta de que una estrella aumentaba y disminuía periódicamente su brillo ¡No se trataba de una nova, sino de una cefeida!

VAR_Hubble

Placa en la que Hubble anotó que se trataba de una variable cefeida y no de una nova

Usando las técnica de Hertzsrpung, mejorada por Shapley, calculó la distancia a Andrómeda y obtuvo un valor de 900000 años-luz, que era superior al tamaño de la Vía Láctea de Shapley. ¡Andrómeda era una galaxia por si misma!

Al encontrar cefeidas en galaxias espirales, Hubble hizo que el tamaño del Universo conocido aumentara considerablemente. Hubble usó las cefeidas para desarrollar indicadores de distancias para galaxias, al igual que hizo Shapley para los cúmulos globulares.

Mientras esto ocurría en Monte Wilson, en Lowell, Slipher seguía midiendo desplazamientos Doppler de galaxias espirales, incluidas aquellas a las que Hubble aplicó su técnica para calcular la distancia.

Milton Humason entró a formar parte de la plantilla de Monte Wilson para trabajar como ayudante a través de su suegro y cuando una noche el operador del telescopio enfermó, paso a ocupar su puesto, y lo hizo con tal destreza que desde entonces ocupó el puesto del operador y de asistente de Hubble de manera permanente. Humason adquirió suficiente información sobre más desplazamientos Doppler al rojo de más galaxias. Hubble reunión todos esos datos para establecer una conexión entre los desplazamientos al rojo y las distancias. La conexión era sencilla: salvo las galaxias más cercanas, cuanto más lejos estaba una galaxia, más rápido se alejaba. El ritmo al que se alejaba es conocido actualmente por el nombre de constante de Hubble.

Aunque lo valores que Shapley o Hubble hallaron en su época eran muy burdos, actualmente se ha mejorado la precisión en la medida y ahora sabemos que la Vía Láctea tiene un diámetro de 100000 años-luz y que la galaxia de Andrómeda está a 2,5 millones de años-luz. Aunque los valores sean ligeramente distintos, lo importante es recordar que el esfuerzo por entender el universo hizo que se desarrollaran técnicas y métodos de observación que, aún hoy en día, están utilizando los astrónomos y astrofísicos modernos.

Como dijo Hubble:

“Con el incremento de las distancias nuestro conocimiento se desvanece, y se desvanece rápidamente, hasta que en el último e impreciso horizonte buscamos entre fantasmales errores de observaciones puntos de referencia que apenas son más sustanciales. La búsqueda continuará. El ansia es más antigua que la historia. Nunca resulta satisfecha, y nunca podrá ser reprimida”

Referencias:

Galaxias. Time Life Folio

Astrofísica. Manuel Rego, María José Fernández