Acelerando partículas (Parte II)

En la última entrada empezamos lanzando puñados de arena y terminamos consiguiendo que paquetes de partículas lanzados en un acelerador de partículas tuvieran todas aproximadamente la misma velocidad y pasaran por los mismos puntos al mismo tiempo, evitando el mismo problema que nos encontramos con la arena. Sin embargo todavía no habíamos conseguido que, además de ir a la misma velocidad, fueran agrupadas en un volumen con un diámetro muy pequeño para maximizar la probabilidad de colisión con otro paquete en los puntos dedicados a ello y minimizar la probabilidad de que se dispersen y choquen contra las paredes de la cavidad que las contiene.

Las partículas que componen un paquete que está siendo acelerado tienen tendencia a esparcirse ya que, como todas son del mismo tipo, tienen la misma carga eléctrica y por lo tanto se repelen. Además en el vacío a través del cual circulan existen impurezas (moléculas de gas, UFOs, etc.) ya que el vacío no es del todo completo. Esto hace que haya colisiones indeseadas y el paquete se disperse.

La solución a este problema se conoce como enfocar las partículas, ya que el mecanismo es similar a lo que ocurre con las lentes pero, en lugar de lentes ópticas, se usan lentes magnéticas, es decir, se utilizan electroimanes superconductores muy potentes.

En un acelerador se utilizan principalmente dos tipos de imanes: imanes dipolares y cuadrupolares. Los primeros se utilizan para curvar la trayectoria de las partículas en un acelerador circular. Los segundos son los que nos importan para enfocar el paquete de partículas.

A ceremony is held as the last of 1746 superconducting magnets is lowered into the 27-km circumference tunnel that houses the LHC. The LHC project leader, Lyn Evans, changes a banner reading ‘first magnet for the LHC’ to ‘last magnet for the LHC’ in his native Welsh.

Imán dipolar superconductor utilizado para curvar la trayectoria de las partículas en el LHC (Fuente: CERN)

Los imanes cuadrupolares enfocan en una dirección perpendicular a la dirección de movimiento. Por lo tanto, si sólo colocáramos un imán en un determinado punto de la trayectoria de las partículas, el paquete se enfocaría en una sola dirección mientras que se dispersaría en la perpendicular. Por ello es necesario colocar dos imanes cuadrupolares cuyas direcciones de enfoque sean perpendiculares entre sí para mantener el haz enfocado y concentrado en un diámetro lo más pequeño posible.

Model of a superconducting quadrupole magnet for the LHC project.

Imán cuadrupolar superconductor utilizado para enfocar las partículas en el LHC (Fuente: CERN)

Esta pareja de imanes cuadrupolares se coloca en determinados puntos a lo largo de la trayectoria de la partícula. El resultado es que el paquete de partículas oscila en anchura y altura. El número de oscilaciones es lo que se conoce como ajuste o calibración (del inglés tune).

Pudiera parecer que ya está todo arreglado. Todas las partículas del paquete llegan al mismo tiempo y están bien agrupadas en un diámetro muy pequeño. Pues no. La perfección no existe, y mucho menos a la hora de construir electroimanes superconductores. Por muy bien que queramos fabricarlos, siempre existen pequeñas imperfecciones que hacen que el paquete no se enfoque tan bien como querríamos. Si un imán produce una pequeñísima desviación en una pasada, después de miles de giros alrededor del acelerador pasando por ese imán (por ejemplo, en el LHC se producen 11245 giros por segundo), la desviación sería tan grande que el paquete se saldría del anillo.

Afortunadamente, también para esto se tiene una solución. Se puede conseguir que el paquete de partículas no “sienta” el mismo error cada vez haciendo un ajuste de manera que, el número de oscilaciones, que sufre el paquete al pasar por los sucesivos imanes en cada giro, no sea un número entero. Por lo que en cada pasada, el enfoque será diferente y así la trayectoria que sigue la partícula también es diferente.

El problema que tiene esta solución es que genera otro problema en sí mismo. A pesar de que la partícula sigue un camino diferente cada vez, el número de caminos se repite cada cierto número de giros, por lo que se crean resonancias que pueden hacer perder el paquete de partículas. Las resonancias se pueden estudiar de manera teórica una vez conocidas las características de los imanes, su localización en el acelerador y otros parámetros como la velocidad a la que giran las partículas. A través de este estudio se puede ver que hay ciertos ajustes que logran conseguir que los paquetes de partículas no entren en estas resonancias. El problema es que esos ajustes tienen que ser extremadamente finos. La buena noticia: los físicos e ingenieros que se dedican a trabajar en aceleradores de partículas, son también extremadamente listos y hábiles, por lo que consiguen realizar cualquier ajuste para conseguir que los aceleradores funcionen a la perfección y podamos conseguir los resultados deseados.

Ahora sí, ya tenemos prácticamente todas las partículas a la misma velocidad y bien agrupadas (aunque partículas díscolas hay hasta en las mejores familias), por lo que podemos lanzar los paquetes unos contra otros para realizar nuevos descubrimientos.

Higgs CMS Discovery 9710002_05

Descubrimiento del bosón de Higgs por el experimento CMS en el LHC (Fuente: CERN)

Referencias

Fermilab Today. Physics in a nutshell (Jueves 16 de Abril de 2015)

Fermilab Today. Physics in a nutshell (Jueves 14 de Mayo de 2015)

Fermilab Today. Physics in a nutshell (Jueves 11 de Junio de 2015)

Fermilab Today. Physics in a nutshell (Jueves 9 de Julio de 2015)

Viaje al corazón de la materia. Física de partículas para profesores

CERN Accelerator School. General Accelerator Physics. Proceedings Vol. I y Vol II. 1985

Anuncio publicitario

Acelerando partículas (Parte I)

Os propongo un experimento para la próxima vez que vayáis a la playa, a un parque o a una obra. Coged un puñado de arena y lanzarlo todo lo rápido que podáis. ¿Qué observáis? Lo primero que veréis es que el puñado de arena, que al principio está más compacto, se va dispersando en todas direcciones y que llega hasta una cierta distancia que se corresponde con la energía (velocidad) que le habéis imprimido al principio. Lo segundo que observaréis es que habrá granos de arena que lleguen un poco más lejos, los que hayan adquirido más energía, y otros que lleguen menos lejos que serán los que tengan menos energía inicial.

Como estáis en la playa y seguro que hay mucha gente con la que podéis jugar, pedidle a la primera persona amable que os encontréis que coja un puñado de arena. Vosotros cogéis otro y os alejáis una cierta distancia. A la de tres, lanzad los puñados con la intención de que choquen entre sí. ¿Cuántos granos de arena chocan? Si tenemos en cuenta que unos granos de arena se han dispersado en todas direcciones, otros habrán llegado antes de tiempo al punto de colisión y otros lo habrán hecho más tarde, lo más probable es que haya pocos granos que colisionen.

¡Enhorabuena! ¡Vosotros y vuestros amables amigos os habéis convertido en un acelerador y colisionador ineficiente de arena!

Aunque esto pretende ser una analogía sencilla, se aproxima mucho a lo que ocurre en los aceleradores de partículas donde, en lugar de acelerar granos de arena, se aceleran protones, electrones, positrones o iones dependiendo de cuáles sean los objetivos del experimento. El evitar que los paquetes de partículas se dispersen y lleguen todos juntos al mismo punto de colisión para maximizar que muchas partículas colisionen, y también para evitar que dañen los sistemas por los que circulan, forma parte del ámbito de la Física de Aceleradores de Partículas.

No hay que olvidar que, para nuestra vida diaria, existen muchos tipos de aceleradores y la gran mayoría sirven para mucho más que para, simplemente, alcanzar objetivos científicos. Además, ya vimos una breve introducción a los aceleradores de partículas y ahora vamos a ver cómo se consigue que las partículas no se dispersen mucho de los paquetes en los que se mueven. Para poder cubrir más aspectos, vamos a considerar que tenemos un acelerador circular como pueden ser el Tevatron o el LHC.

Al contrario que con el puñado de arena, los paquetes de partículas no se pueden quedar sin energía tras el suministro inicial, de hecho deben ganar energía para que la colisión proporcione los resultados deseados. La manera de ganar energía es a través de campos de radiofrecuencia, es decir, campos que oscilan de manera sinusoidal con el tiempo en el interior de una cavidad diseñada para ello.

One of the superconducting modules which will supply 400MHz radiofrequency power to accelerate the particles in CERN's LHC collider.

Uno de los módulos de radiofrecuencia para acelerar partículas en el LHC (Fuente: CERN)

Cuando la partícula entra en la cavidad, cuando el campo está oscilando en la parte del ciclo orientado para dar aceleración, esta adquiere energía y se acelera. Pero al igual que los granos del puñado de arena no van todos a la misma velocidad sino que unos llegan antes que otros, las partículas, al pasar por la cavidad, no reciben todas la misma cantidad de energía, ya que entrarán en la cavidad en diferentes partes del ciclo de oscilación.

Esto lo podemos ver la siguiente gráfica:

gráfica1

Las partículas que entren antes, adquirirán una energía dada por el campo correspondiente al punto 3, mientras que las que entren más tarde adquirirán la energía del campo en el punto 2 o 1 que es menor.

La solución a este problema tiene, en teoría, fácil solución. Se ajusta la fase del campo de radiofrecuencia de manera que cuando las partículas más rápidas se encuentren con una fase del ciclo en la que se les suministre poca energía y que las partículas más lentas entren en la cavidad cuando el ciclo esté en un máximo, como se ve aquí:

gráfica2

De esta manera, existe a lo largo de aceleraciones sucesivas (cada paso a través de la cavidad) una oscilación estable de las partículas que se mueven desde la parte más rápida del paquete de partículas hasta la parte más lenta y viceversa muchas veces. Lo ideal sería que las partículas se mantuvieran siempre en el centro del paquete, pero lo ideal rara vez es posible.

Antes hemos comentado que la solución era fácil en teoría, y es que en la práctica todo es más complicado. La culpa de todo la tiene Einstein y su teoría de la relatividad. En un acelerador de partículas se alcanzan velocidades cercanas a la de la luz. Cada vez que la partícula pasa por la cavidad se acelera un poco más, pero al alcanzar velocidades cercanas a la de la luz el aumento de la velocidad es cada vez menor aunque la energía aumente ya que, según la teoría de la relatividad, la masa de la partícula también aumenta. Como estamos en un acelerador circular, cuando las partículas giran alrededor del anillo son curvadas por potentes imanes superconductores, ya que de otra forma seguirían una trayectoria rectilínea. El problema es que las partículas más energéticas (las que llevan una mayor velocidad tienen un radio de giro mayor que las menos energéticas, por lo que su trayectoria a lo largo del acelerador es ligeramente más larga. Esta trayectoria más larga de las partículas más energéticas hace que entren en la cavidad de aceleración más tarde que las más lentas (que llevan trayectorias más cortas). Precisamente al revés de lo que pensábamos que ocurría. El punto en el que las partículas pasan a tener una trayectoria más larga se llama transición y lo que se hace es ajustar la fase del campo de radiofrecuencia de manera que se consiga que las partículas más energéticas adquieran menos energía cuando entren en la cavidad y las menos energéticas adquieran más energía.

Algún lector avispado se habrá dado cuenta de que en las gráficas anteriores hemos puesto las partículas en la parte “ascendente” de la curva y pensará “¿por qué no se ponen en el punto máximo?, así se adquiere la máxima energía”.

Si vemos la figura siguiente, es cierto que adquirirían la mayor cantidad de energía las que pasen por ese punto, pero de esta manera las partículas que entraran antes adquirirían menor energía y las que lo hicieran después también, haciendo así que el haz se dispersara por completo y se perdiera, posiblemente dañando el acelerador. No importa tanto la cantidad como la calidad.

gráfica3

Si volvemos a la analogía con el puñado de arena que habéis lanzado contra el puñado de vuestro amigo, hemos solucionado el problema de que los granos de arena lleguen al encuentro con velocidad suficiente y que la diferencia de velocidades entre las partículas que llegan antes y después sea pequeña para que la colisión sea eficaz. El problema es que todavía no hemos conseguido que estén agrupadas todas juntas, geométricamente hablando, por lo que es posible que el número de colisiones sea muy bajo. La solución a este problema la dejamos para la próxima vez.

Referencias

Fermilab Today. Physics in a nutshell (Jueves 16 de Abril de 2015)

Fermilab Today. Physics in a nutshell (Jueves 14 de Mayo de 2015)

Fermilab Today. Physics in a nutshell (Jueves 11 de Junio de 2015)

Fermilab Today. Physics in a nutshell (Jueves 6 de Agosto de 2015)

CERN Accelerator School. General Accelerator Physics. Proceedings Vol. I y Vol II. 1985

Breve introducción a los aceleradores de partículas

Los aceleradores de partículas son dispositivos en los que mediante la aplicación de campos eléctricos y magnéticos se le suministra una energía a la partícula que se pretende acelerar con el propósito de conseguir diversos objetivos, que van desde la pura investigación de la estructura de la materia que compone el universo hasta las aplicaciones médicas o industriales.

El uso de partículas para la investigación de la estructura de la materia se empleaba mucho antes de que los aceleradores de partículas existieran. En este periodo pre-aceleradores, Rutherford utilizó fuentes de Radio y Thorio para obtener partículas alfa que dirigía hacia un objetivo. Con estas partículas alfa, Rutherford demostró la existencia de un núcleo cargado positivamente en el interior de los átomos. También utilizó partículas alfa para producir la primera reacción nuclear de manera artificial.

Sin embargo, la energía utilizando las partículas alfa de este modo no era suficiente para investigar en profundidad la materia. Se necesitaban energías superiores.

A comienzos del siglo XX se utilizaban tubos de vacío a los que se les aplicaba una diferencia de potencial entre los extremos. A continuación se inyectaban electrones en el tubo y eran acelerados debido a esa diferencia de potencial. Con estos dispositivos, se producían los rayos X. Pero el objetivo era vencer la barrera culombiana del núcleo recién descubierto por Rutherford, así como seguir produciendo reacciones nucleares artificiales, y para ello se necesitaban energías todavía más altas.

En 1932, Cockroft y Walton consiguieron acelerar protones a 400 keV usando un multiplicador de voltaje diseñado por ellos. Los protones acelerados así los utilizaron para bombardear Litio y obtener Helio (Li + p -> 2He). A partir de aquí, comenzó la era de los aceleradores de partículas. En los años 50 del siglo XX, el principal uso de los aceleradores era estudiar la estructura del núcleo atómico, es decir, se utilizaron los aceleradores como un microscopio, ya que según de Broglie las partículas tienen una longitud de onda asociada λ = h/p=hc/E. Por lo que a mayor energía E, menor longitud de onda λ y las partículas pueden penetrar mejor en el interior del núcleo. Por ejemplo para energías de 1 GeV, la longitud de onda asociada es 10-13 cm, que es el diámetro del protón y por lo tanto, se necesitan energías superiores a 1 GeV para poder estudiar la estructura interna del núcleo.

Cockcroft-Walton_accelerator_Clarendon_Lab_Oxford

Multiplicador de voltaje de Cockcroft & Walton. Fuente

Además en investigación en física de partículas, estas han de ser creadas a partir de la energía propia de la colisión de dos partículas aceleradas, según Einstein (E=mc2). Si consideramos la masa del protón, la energía en reposo usando la ecuación de Einstein es aproximadamente de 1 GeV, por lo que esta energía nos da un umbral para la creación de partículas en colisiones protón-protón.

El multiplicador de voltaje de Cockroft y Walton era capaz de conseguir grandes voltajes, e incluso introduciendo mejoras se podían conseguir diferencias de potencial aún mayores, pero pronto alcanzaba su nivel de saturación en el que para conseguir grandes energías para acelerar las partículas era necesario aumentar el tamaño del dispositivo de manera excesiva. Para ello se empezó a desarrollar otro tipo de aceleradores basados en corriente continua (DC, por direct current).

En los aceleradores de DC, la unidad que genera el alto voltaje se conecta a un tubo rectilíneo en el que las partículas son aceleradas en un solo paso a través del tubo. Ejemplos de aceleradores de DC son el acelerador de Van de Graaf o el acelerador electrostático tipo tándem. Estos aceleradores alcanzaban la saturación por debajo de energías de 1 GeV. Por lo tanto, estos aceleradores no son útiles para el estudio en física de partículas, pero sí para estudios de física nuclear y aceleración de iones. Algunos de estos aceleradores también se utilizan en la industria y en aplicaciones médicas.

VanderGraaf

Aceleradores de Van der Graaf. Fuente

Para seguir avanzando en investigación en física de partículas, se necesitaban energías mayores. Por ello se empezaron a desarrollar equipos que aceleraban las partículas a través de cavidades usando aceleración por radiofrecuencia (RF). Con esta tecnología se pudieron desarrollar dos tipos de aceleradores de RF: los lineales y los cíclicos o circulares.

Los aceleradores lineales tienen una geometría rectilínea al igual que los aceleradores de DC, pero al contrario que éstos, utilizan una aceleración en varios pasos, a través de la aplicación de campos eléctricos que alternan su polaridad entre sucesivas cavidades separadas entre sí. De este modo, cuando la partícula pasa de cavidad a cavidad a través del espacio entre ellas, se va encontrando potenciales eléctricos alternos que las aceleran en cada paso. Estos aceleradores son más conocidos como LINACs (Linear Accelerators)

En otros casos, se utilizan cavidades de radiofrecuencia cuadripolares, de manera que al mismo tiempo que se consigue una aceleración del haz de partículas al paso por la cavidad, también se consigue enfocar el haz. Esto es útil cuando se quiere hacer colisionar el haz contra un objetivo o contra otro haz, cosa que sucede en prácticamente todas las aplicaciones de los aceleradores de partículas.

LINAC-RFQ

Izquierda: Principo de construcción de un acelerador lineal según Ising y Wideröe. Fuente. Derecha: cavidades de radiofrecuencia cuadriculares. Fuente

Los aceleradores circulares o cíclicos utilizan las cavidades de radiofrecuencia para acelerar los haces de partículas, de la misma manera que los aceleradores lineales, pero a su vez emplean campos magnéticos para curvar la trayectoria de los haces y mantenerlos confinados en la trayectoria circular.

El primer acelerador circular, el ciclotrón, utilizaba una frecuencia fija de giro. Este acelerador también utiliza un campo magnético fijo en la dirección perpendicular al plano de giro del haz. Este acelerador fue desarrollado por Ernest Lawrence (más información sobre Lawrence y su ciclotrón aquí y aquí).

Cyclotron_with_glowing_beam

Vista de un ciclotrón. Fuente

Uno de los problemas del ciclotrón es que el campo magnético perpendicular al plano de giro pierde intensidad en los extremos. Además debido al aumento de masa de las partículas por efectos relativistas, el diámetro de estos aceleradores estába limitado a 1 m. Por ello, en 1945, se desarrolló el sincrociclotrón que aplicaba una frecuencia variable para compensar el aumento de masa por efectos relativistas y la pérdida de intensidad del campo magnético. De esta manera, se podían conseguir energías máximas muy superiores al ciclotrón.

Sincrociclotrón

Sincrociclotrón. Fuente

En 1952, se desarrolló el primer sincrotrón (Cosmotrón) en el que en lugar de tener un gran imán para mantener la curvatura de los haces de partículas, se utiliza un anillo de potentes imanes que curva las partículas a su paso. Además la intensidad del campo magnético de los imanes se puede variar, de manera que a cada paso del haz por el imán el campo magnético se hace más intenso para compensar la energía que ha ganado en el paso anterior por la cavidad de radiofrecuencia. Los sincrotrones se utilizan en combinación con aceleradores lineales que actúan como inyectores de los haces de partículas.

tevatron_homepage_graphic

Un sincrotrón, el Tevatrón de Fermilab. Fuente

Además, en un sincrotrón se utilizan varios tipos de imanes. Así, los imanes dipolares curvan las trayectorias y los cuadripolares enfocan el haz para hacerlo cada vez más estrecho, y evitar que las partículas se dispersen y choquen contra las paredes de los imanes causando daño.

Finalmente, con el desarrollo de la superconductividad, se ha conseguido desarrollar cavidades de radiofrecuencia superconductoras así como electroimanes superconductores. Esto ha dado pie a poder alcanzar aceleraciones muy superiores, al mismo tiempo que poder curvar las trayectorias más amplias que suceden al alcanzar energías mayores, como es el caso del LHC que recientemente ha empezado su run II alcanzando energías de colisión en el centro de masas de 13 TeV.

Esta entrada participa en la edición del LXII Carnaval de la Física que es albergado en esta ocasión en el blog La Aventura de la Ciencia de Daniel Martín Reina

Referencias

CERN Accelerator School – General Accelerator Physics Proceedings. Vol. I. 3-14 Septiembre 1984

Más sabores

El zoo de partículas subatómicas ha ido creciendo a lo largo de los años desde el descubrimiento del electrón, como uno de los constituyentes fundamentales de los átomos. Al principio, el descubrimiento de estas nuevas partículas ocurría de manera casual mediante el uso de primitivos aceleradores de partículas o por el estudio de rayos cósmicos, es decir, de las partículas de alta energía que inciden en la atmósfera, provenientes del espacio, donde colisionan con los átomos del aire y producen otras partículas. No existía un modelo teórico que pudiera predecir la existencia de esas partículas, así que todo llegaba por sorpresa.

Un ejemplo de ello ocurrió en 1936 cuando Carl Anderson y Seth Neddermeyer, por entonces en Caltech, estaban estudiando los rayos cósmicos usando una cámara de niebla a la que aplicaban un campo magnético y encontraron trazas de unas partículas que se curvaban de manera ligeramente diferente a como lo hacían los electrones. Estaba claro que por su curvatura tenían carga negativa, pero su radio de curvatura era mayor que el de los electrones. Se asumió que esta nueva partícula tenía la misma carga que el electrón, por lo que para conseguir que el radio de curvatura fuera mayor, esta partícula tenía que tener una masa mayor que la del electrón, considerando partículas a la misma velocidad. Se comparó también el radio de curvatura con el de las trazas de protones (aunque estos tuvieran carga positiva) y se vio que el radio de la nueva partícula era menor que el de éstos, por lo que su masa tenía que ser menor que la de los protones.

La existencia de esta nueva partícula añadió una complejidad adicional al zoo de partículas que empezaba a aparecer en esa época. Inicialmente se llamó mesotrón e incluso se llegó a pensar que era la partícula mediadora de la fuerza fuerte que había predicho Yukawa, por lo que se le cambió el nombre a mesón mu. Tras el descubrimiento del pión (o mesón pi) y otros mesones (un mesón es una partícula compuesta de dos quarks y que tiene spin entero), se vio que el mesón mu no tenía las mismas propiedades que los mesones, es decir, no interaccionaban con la fuerza nuclear fuerte. Además, se descubrió que los mesones mu se desintegraban en neutrinos y antineutrinos. A partir de entonces se le volvió a cambiar el nombre por muón ya que así se alejaba del concepto de mesón al que se le había asociado anteriormente.

muon_neutrino-4e7cb2b-intro

 

Neutrino muónico (Fuente: Particle Zoo)

La aparición de neutrinos y antineutrinos planteaba una cuestión importante. ¿Son los mismos neutrinos que los asociados a los electrones en la desintegración beta? Estaba claro que se tenía que continuar con la tarea iniciada por Reines y Cowan como cazadores de neutrinos e intentar solucionar el misterio.

Una buena manera de estudiar la naturaleza de los neutrinos asociados a los muones es a través del estudio de la reacción π → μ ν. El problema era que, para obtener piones en cantidades suficientes como para llevar a cabo la investigación, son necesarias energías que no se alcanzan a través del estudio de los piones producidos en la atmósfera como producto de las colisiones de los rayos cósmicos. Era necesario, por tanto, utilizar aceleradores de partículas. Además de unos investigadores lo suficientemente atentos como para ver que utilizando esta reacción de desintegración se podía investigar el problema.

Esta conjunción de factores, un acelerador y unos buenos investigadores, se dio en el acelerador de Brookhaven en 1962 donde se encontraban trabajando Leon Lederman, Mel Schwartz y Jack Steinberger.

En su libro, La partícula divina (dejemos aparte la historia de porqué se llama divina), Lederman cuenta la historia de cómo llegó a idear y montar el experimento.

Utilizando el Sincrotrón de Gradiente Alterno (Alternating Gradient Synchrotron) de Brookhaven, que en 1960 consiguió alcanzar unas energías sin precedente al acelerar protones a 33 GeV, el equipo formado por Lederman, Schwarz y Steinberger aceleraron protones hasta una energía de 15 GeV. Una vez alcanzada esta energía el haz de protones se dirigió hacia un blanco de berilio donde, al colisionar, se producían piones que volaban libremente a lo largo de unos 21 m, tiempo durante el cual se desintegraban en muones y neutrinos. A continuación se puso una barrera de algo más de 13 m de grosor y 5000 toneladas, hecha con viejas placas de barcos de guerra, en la que se paraban todas las partículas más pesadas excepto los neutrinos, quedando como resultado un haz de neutrinos (asociados a los muones) con energías de hasta 1 GeV.

Lo que detectaron fueron 34 huellas de muones (teniendo en cuenta un fondo de unos 5 muones procedentes de rayos cósmicos). Si los neutrinos fueran los mismos para la desintegración del pión y la desintegración beta, teóricamente, habrían observado unas 29 huellas de electrones, que eran bien conocidas por ellos, y si fueran distintos habrían observado, como mucho, uno o dos huellas de electrones procedentes de la desintegración de kaones tales como K+ → e+ + νe + π0. No se observaron electrones.

Por el descubrimiento del neutrino muónico, Lederman, Schwarz y Steinberger recibieron el premio Nobel en 1988.

lederman_postcard

Leon Lederman (Fuente: Nobelprize.org)

schwartz_postcard

Mel Schwarz (Fuente: Nobelprize.org)

steinberger_postcard

Jack Steinberger (Fuente: Nobelprize.org)

Ahora sabemos que existen tres tipos de neutrinos. El tercero es el asociado al leptón tau, que es como el muón y el electrón, pero todavía más pesado. Sin embargo, el descubrimiento del neutrino tau, no solucionó todas las incógnitas que tenemos sobre los neutrinos. Todavía nos quedan muchas cosas por conocer, pero esto mejor lo dejamos para otra ocasión.

Referencias

Discovery of the Muon-Neutrino

T2K Experiment

La Partícula Divina. Leon Lederman y Dick Teresi

Seth H. Neddermeyer and Carl Anderson. Note on the Nature of Cosmic-Ray Particles. Phys. Rev., Vol. 51, 884.