Biomarcadores y vida extraterrestre

Esta entrada fue publicada con anterioridad en Hablando de Ciencia

Quizá una de las cosas que más ha llamado la atención a la humanidad desde siempre es el hecho de que parece que estamos solos en el universo. Dado que el universo es tan grande, no nos cansamos de buscar vida en otros lugares, sea esta inteligente o no. Sin embargo, a pesar de la enorme cantidad de exoplanetas que se han encontrado últimamente y dadas las distancias a otras estrellas, resulta improbable, por no decir imposible en el corto o medio plazo, viajar hasta esos planetas para ver si existen formas de vida allí, cualesquiera que sean. Para evitar esos viajes interestelares, se buscan señales de vida por otros medios.

La astrobiología es la rama de la ciencia que intenta responder a preguntas como ¿qué es la vida? Y ¿Cómo surgió la vida en la Tierra? Para responder a estas preguntas, la astrobiología mezcla el conocimiento de otras ciencias como la biología, química, geología y astrofísica, entre muchas otras. Por tanto, la astrobiología busca la comprensión del fenómeno de la vida ya sea en la tierra como fuera de ella y es una ciencia realmente transdiciplinar.

La astrobiología es una ciencia relativamente nueva y su origen se puede situar en 1998 cuando se creó el NASA Astrobiology Institute.

Sin embargo, la búsqueda de vida en otros planetas viene de más atrás en el tiempo. La idea de la existencia de vida en Marte, y la NASA sabe muy bien cómo hacer spoilers sobre ello como ha hecho (otra vez) últimamente, se retrotrae a la época de Percival Lovell.

Percival Lovell fue un astrónomo de prestigio, incluso en sus últimos años de vida realizó una serie de observaciones en las que buscaba el Planeta X más allá de Neptuno. Tras su muerte, Clyde Tombaugh, mientras trabajaba en el Observatorio Lovell, descubrió tal planeta, que terminó llamándose Plutón.

Pero volvamos a Marte. El astrónomo italiano Giovanni Schiaparelli había observado, en la segunda mitad del siglo XIX, unas líneas oscuras en la superficie de Marte. Estas líneas, borrosas y muy poco definidas debido a la calidad óptica de los telescopios de aquella época, recibieron el nombre italiano de canali ya que Schiaparelli era italiano. Lovell volvió a observar esas mismas líneas con un telescopio algo mejor y, el nombre italiano de canali y su traducción al inglés channel (canal), le llevaron a identificarlas como unos canales artificiales hechos por alguna forma de vida para transportar agua desde los polos de marte hasta zonas ecuatoriales. Lovell era una autoridad en aquella época en el ámbito de la astronomía, así que sus declaraciones fueron consideradas como ciertas. Es decir, existía vida en otro planeta, Marte.

Ahora sabemos que no es así, pero seguimos buscando vida fuera de nuestro planeta. Eso sí, ahora somos más realistas y utilizamos todas las herramientas científicas que tenemos a nuestra disposición.

Para usar estas herramientas tenemos que tener claro que la vida está muy ligada a la atmósfera de un planeta. Para darnos cuenta de esto, basta con que pensemos en la atmósfera de la Tierra

Cuando se formó la Tierra, las rocas y el polvo interplanetario que formaban el disco protoplanetario alrededor del Sol que dio lugar a la Tierra formaron la parte sólida de nuestro Planeta, pero entre las partículas que había en ese disco protoplanetario también había moléculas de gas que no llegaron a formar parte de la parte sólida, pero sí quedaron atrapadas por la fuerza de la gravedad de la tierra. Estas moléculas gaseosas dieron lugar a la atmósfera primitiva.

Poco a poco, la tierra evolucionó y se formaron las primeras formas de vida. Unas formas de vida que modificaron la composición de la atmósfera. El oxígeno, un gas que es fundamental para la vida hoy en día, cobró un gran protagonismo en la atmósfera y fue gracias a él que existe la vida tal y como la conocemos hoy en la tierra.

Todo esto nos lleva a pensar que, si lográramos observar la atmósfera de un planeta extrasolar y ver qué gases la componen, sobre todo ver si hay oxígeno, que es un biomarcador, es decir, una señal de que hay vida en la Tierra, podríamos determinar si existe vida o no.

¿O no?

Precisamente depende del estado de evolución del exoplaneta en cuestión y de su atmósfera. Ya hemos dicho que en la atmósfera primitiva no había mucho oxígeno. Por lo tanto, si un exoplaneta estuviera en esa fase, es posible que existiera vida primitiva pero no detectaríamos oxígeno. Entonces, ¿qué haríamos? ¿Diríamos que en ese planeta no existe vida y lo descartaríamos? ¿Esperaríamos unos cuantos millones de años y volveríamos a observarlo después, por si fuera que todavía no se había desarrollado completamente?

El proyecto NExSS (Nexus for Exoplanet System Science) trata de investigar esa posible habitabilidad de los planetas extrasolares y recientemente han publicado una serie de artículos en la revista Astrobiology en el que plantean como habría que identificar los biomarcadores a utilizar en la búsqueda de vida extraterrestre.

Las conclusiones a las que han llegado dependen principalmente del estado evolutivo de ese planeta, de la estrella que acoge el planeta y de las condiciones de su órbita. Para ello han estudiado tres tipos de biomarcadores.

  • Biomarcadores gaseosos como el oxígeno. Aunque no lo podamos detectar en las primeras fases de la evolución del planeta, no debemos olvidar que el oxígeno hay que tenerlo en cuenta.
  • Biomarcadores en superficie. Es decir, como se refleja y absorbe la luz que llega de la estrella y pasa a través de la atmósfera. Esto también ocurre en la tierra. No es lo mismo observar el bosque amazónico que el desierto del Sahara. Las señales que de vida que hay en uno y de otro son distintas.
  • Biomarcadores temporales. Estos marcadores nos indicarían la estación del año. En inviernos muy fríos y veranos muy cálidos las señales de vida son muy diferentes a las de estaciones templadas.

Estos artículos también discuten otros aspectos como la manera de identificar biomarcadores que no sean propios de la vida en la tierra o de aspectos climáticos extremos que puedan influir en su existencia.

Está claro que todavía queda algún tiempo hasta que encontremos vida en otros planetas. Para ello antes tenemos que entender bien cómo y por qué existe la vida en la tierra y la astrobiología será una ciencia que dará mucho que hablar en un futuro cercano.

 

 

Anuncios

Formación estelar en las primeras galaxias

Galaxia espiral ESO 325-G004. Fuente Wikipedia. Crédito NASA, ESA, and The Hubble Heritage Team (STScI/AURA); J. Blakeslee (Washington State University)

Esta entrada fue publicada con anterioridad en Hablando de Ciencia

Aunque algunas veces vemos estrellas vagando por el espacio intergaláctico, la gran mayoría de ellas se encuentra en las propias galaxias. Las estrellas son los ciudadanos de las galaxias. Se mueven entre el polvo galáctico y algunas tienen familia en forma de planetas.

Se podría decir que las estrellas dan carácter a las galaxias. Dependiendo de los tipos de estrellas que tengan, las galaxias tendrán una composición u otra.

Para estudiar la composición de las galaxias se utiliza la técnica de la espectroscopia. Cuando la luz proveniente de una galaxia se hace pasar a través de un espectrógrafo, esta se descompone en diversos colores (longitudes de onda en el espectro electromagnético) y analizando estos, se puede saber que elementos químicos la componen. Cuando, a través de la observación, podemos distinguir estrellas individuales, algo que solo pasa en las galaxias más cercanas, la luz sabremos que es la de una determinada estrella en esa galaxia. Cuando la galaxia es muy lejana, la luz será la suma de la que emiten todas las estrellas de esa galaxia.

Estudiando esta luz, si detectamos elementos químicos pesados – por ejemplo, carbono, oxígeno o incluso más pesados – podemos decir que la galaxia es relativamente joven. Si los elementos químicos son ligeros como el hidrógeno, helio o litio, la galaxia será muy vieja.

Este hecho se explica por dos razones.

La primera es que al comienzo del universo los elementos químicos que existían eran fundamentalmente hidrógeno, helio y litio. Mediante reacciones nucleares en el núcleo, estos elementos se transforman en elementos más pesados y, cuando la estrella llega al final de sus días, son expulsados al medio interestelar para dar lugar a estrellas que los incorporarán en su composición. Es decir, las estrellas que tienen elementos pesados son más jóvenes ya que se han formado después de las que solo tenían hidrógeno, helio y litio.

La segunda razón es que cuando observamos una galaxia lejana, debido a que su luz ha tardado más tiempo en llegar hasta nosotros por tener una velocidad finita, lo que en realidad estamos viendo son las galaxias más antiguas del universo.

Con todo esto podríamos decir que cuando observamos una galaxia muy muy lejana, estaríamos estudiando una de las primeras galaxias del universo y por lo tanto su composición sería principalmente hidrógeno, helio y litio.

O no.

Takuya Hashimoto y colaboradores han usado ALMA para observar una galaxia cuya luz se emitió 550 millones de años después del Big Bang. Teniendo en cuenta la vida de las estrellas (las más masivas evolucionan más rápido que las menos masivas), las primeras estrellas de esta galaxia se habrían formado cuando el universo tenía solo 250 millones de años después del Big Bang.

Cúmulo de galaxias MACS J1149.5+2223 tomado por el Hubble Space Telescope. Mostrando la imagen de la galaxia MACS1149-JD1 en verde (oxígeno) tomada por ALMA. Crédito: ALMA (ESO / NAOJ / NRAO) / Hashimoto et al. NASA / ESA Hubble Space Telescope / W. Zheng (JHU) / M. Postman (STScI) / CLASH Team

La curiosidad de estas observaciones es que han detectado oxígeno, que es, como hemos visto, uno de los elementos pesados que surgen tras la muerte de las primeras estrellas. Esto quiere decir que en aquel momento ya se deberían haber formado estrellas (y haber muerto) para que el medio interestelar se enriqueciera con oxígeno.

Podríamos pensar que lo que ocurrió es que en esas galaxias la población de estrellas muy masivas era muy alta, con lo cual, sería muy probable que un gran número de ellas hubieran muerto y enriquecido el medio interestelar con oxígeno. Pero, no. Las observaciones han mostrado que el número de estrellas masivas es menor de lo esperado según los modelos de formación y evolución de galaxias. Estos modelos, predicen que la formación estelar comienza despacio y crece, a lo largo del tiempo, de manera exponencial. Sin embargo, lo que se observa es que, de alguna manera, hubo un fuerte comienzo de formación estelar, después se apagó durante un tiempo y posteriormente la formación volvió a ocurrir.

¿A qué conclusión nos lleva todo esto? Como en cualquier rama de la ciencia podemos tenemos dos opciones. La primera es que tenemos que seguir observando para obtener más resultados y confirmar o refutar las observaciones de Hashimoto y colaboradores. La segunda es que todo lo el conocimiento que tenemos sobre la formación de la primera generación de galaxias es incompleto. También puede existir una tercera opción que es la combinación de las dos anteriores.

Necesitamos más observaciones y más astrofísicos trabajando para llegar a entender como nuestro universo ha llegado a ser como es.

Para saber más:

Takuya Hashimoto et al. The onset of star formation 250 million years after the Big Bang. Nature Volume 557, pages 392-395 (2018). doi: 10.1038/s41586-018-0117-z

El misterio de las fuentes ultraluminosas de rayos X

A pesar de conocer los mecanismos que hacen que las estrellas brillen, todavía me sorprendo cuando miro a las estrellas, incluso desde las grandes ciudades donde la contaminación lumínica es excesiva, y pienso que aun estando tan lejos su luz llega hasta nosotros.

Sin embargo, en el universo hay fuentes de luz mucho más luminosas que no vemos. Por un lado, están demasiado lejos como para verlas a simple vista y por otro, no las vemos porque emiten su luz en longitudes de onda que no podemos detectar con nuestros ojos. Uno de estos objetos tan luminosos son las fuentes de rayos X ultraluminosas y todavía es un misterio cuál es su mecanismo de funcionamiento.

En los años 80, el observatorio Einstein, un telescopio espacial de rayos X, descubrió unos objetos que emitían gran cantidad de rayos X y que se denominaron fuentes de rayos X ultraluminosas (ULX, Ultraluminous X ray source).

Observatorio Einstein

Los ULX son fuentes muy intensas, aunque no tanto como los núcleos de galaxias activas(AGN, Active Galactic Nucleus). En una fuente ULX, sin embargo, la luminosidad era mayor de lo que se podía esperar mediante la emisión de radiación por procesos estelares, es decir, su luminosidad no era debida a los procesos que se dan en las estrellas para generar luz

La luminosidad superaba el límite de Eddington, es decir, era tan luminosa que la radiación emitida tendría que expulsar también parte la materia que lo componía y, por lo tanto, sería inestable o incluso no podría existir. Esto provocaba que la radiación no pudiera ser generada por agujeros negros estelares masivos.

Además, la radiación emitida era la misma en todas direcciones, lo que quiere decir que era isótropa.

El misterio de la emisión de rayos X de las fuentes ULX se intentó explicar mediante la existencia de objetos conocidos como cuásares o restos de supernova, pero no todos las fuentes ULX se podían explicar mediante estos objetos.

Otra posible explicación fueron los agujeros negros de masa intermedia.

Los agujeros negros se pueden clasificar en dos categorías. En primer lugar, tenemos los agujeros negros estelares que se forman como resultado de la muerte de estrellas muy masivas y tienen una masa de 10 – 20 masas solares. En segundo lugar, tenemos los agujeros negros supermasivos que pueden llegar a tener masas de millones a miles de millones de masas solares y son los que se encuentran en el centro de las galaxias.

Pero existe otra categoría, todavía hipotética, que son los agujeros negros de masa intermedia. Estos tendrían masas de cientos a miles de masas solares y serían ligeros como para no ser atraídos hacia el centro de las galaxias y, además, lo suficientemente masivos como para emitir rayos X ultraluminosos sin exceder el límite de Eddington. El problema es que todavía no se han detectado agujeros negros de masa intermedia.

Desde que se descubrió la primera fuente ULX con el observatorio Einstein en los años 80, se han puesto en órbita nuevos observatorios más potentes y precisos como NuSTAR, Chandra y XMM-Newton. Precisamente, observaciones con estos telescopios han empezado a arrojar nuevos datos sobre los mecanismos de emisión de las fuentes ULX, o al menos han introducido a un nuevo sospechoso a la lista ya formada por los cuásares, restos de supernova y agujeros negros intermedios. Este nuevo objeto serían las estrellas de neutrones.

El espectro de una fuente ULX que se encuentra en la galaxia M51, también conocida como galaxia Remolino muestra una disminución de brillo a una longitud de onda de 0,3 nm (3 x 10-10m) que se corresponde a la emisión de las partículas cargadas cuando giran velozmente en campos magnéticos. Precisamente esta emisión solo se ha observado en estrellas de neutrones.

M51 o Galaxia Remolino. Objeto en el que se ha estudiado la fuente ULX

Para la comunidad científica este descubrimiento es toda una sorpresa por una simple razón, ¿cómo es posible que la causa de la elevada luminosidad de una fuente ULX pueda ser un objeto tan modesto y poco masivo como una estrella de neutrones en lugar de un agujero negro con masas del orden de 1000 masas la de nuestro Sol?

Todavía no hay una respuesta y ya se han planificado nuevas observaciones de la fuente ULX de M51 para ver si se puede hallar una solución al misterio, ya de por sí interesante, de las fuentes ultraluminosas de rayos X.

Bibliografía:

Feng, H., Soria, R. Ultraluminous X-Ray Sources in the Chandra and XMM-Newton Era. arXiv:1109.1610v2 [astro-ph.HE]

Brightman, F.A. Harrison, F. Fürst, M.J. Middleton, D.J. Walton, D. Stern, M. Heida, D. Barret & M. Bachetti. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source. Nature Astronomy (2018) doi:10.1038/s41550-018-0391-6

Beaming with the Light of Millions of Suns

Esta entrada fue publicada con anterioridad en Hablando de Ciencia

 

Nuestro Sol, uno de tantos – Pedro Carrasco Garrorena en Ciencia de Acogida

En el último post os hablaba como había sido mi colaboración en 2017 con Principia. Ahí os conté que había colaborado en a exposición Ciencia de Acogida, una exposición virtual donde se recopilaban las biografías de una gran cantidad de científicos exiliados y que uno de esos científicos fue Pedro Carrasco Garrorena. Dentro de la exposición, tuve la oportunidad de hablar sobre Pedro en un marco tan alucinante como es Centro Centro. Este mini post es para decir que ya está disponible el vídeo de la charla. Reconozco que no se me da bien hablar, pero también reconozco que lo pasé en grande preparando y dando la charla. Espero que os guste.

Pincha en la imagen para acceder a la charla (y que no se te olvide ver el resto de las charlas)

Extinción Estelar

Fuente: European Space Agency (ESA/Hubble)

Esta entrada fue publicada con anterioridad en Hablando de Ciencia

Se suele decir que «nada es lo que parece» y, en el caso del brillo de las estrellas, este dicho es cierto. La razón es que, aunque nos parezca lo contrario, el espacio entre las estrellas no está vacío. Hay grandes cantidades de gas, principalmente hidrógeno, pero también pequeñas partículas de polvo que no detectamos. Estos dos componentes son los culpables de que el brillo de las estrellas no sea el que parece y sobre todo, hace que las distancias a las estrellas no sean las que parecen ser.

El gas que está entre las estrellas tiene valores en torno al cero absoluto, pero en las cercanías de las estrellas toma valores superiores y cercanos a los 100 K (-173,15°C). Esta temperatura se debe a que la radiación emitida por las propias estrellas lo calientan. Hemos comentado que el gas se compone principalmente de hidrógeno, pero gracias a las observaciones pasadas, usando observaciones en el infrarrojo, ultravioleta y radio, e investigaciones más recientes, como las del proyecto ASTROMOL, sabemos que también hay calcio, sodio, etc., pero también moléculas mucho más complejas.

En cuanto al polvo, sabemos que está formado por partículas sólidas, en su mayoría grafitos y silicatos, con tamaños del orden de 0,5 μm (0,0000005m) y formas alargadas.

Este polvo provoca un oscurecimiento de la luz. Es algo muy fácil cuando hay fuertes vientos que levantan mucho polvo. Cuando eso sucede, parece que llega menos luz del Sol y sin embargo llega la misma luz, solo que más oscurecida (y enrojecida)

Tormenta de polvo en Sidney en 2009. (Fuente: Wikipedia, The Wub)

El polvo hace que el brillo se reduzca. Esto quiere decir que la magnitud aparente, en presencia de polvo, es menor y, dado que una de las principales maneras que tenemos de medir las distancias a las estrellas es a través de la medida de su magnitud aparente, su distancia aumenta ya que, al parecer menos brillante, podríamos pensar que está más lejos.

La extinción (A) depende del rango espectral en el que se realicen las observaciones. Si las observaciones se hacen en el infrarrojo la extinción será débil, mientras que será mayor en el ultravioleta. Por ejemplo, en el entorno solar, la extinción en el rango visible se estima en 1,5 magnitudes por cada mil parsecs, es decir, cada kiloparsec que nos alejamos del sol, el brillo de una estrella lejana se reduce en 1,5 magnitudes. Esto hace que, a la hora de calcular la distancia a esa estrella, estemos cometiendo un error considerable. Y esto solo en las inmediaciones del sistema solar. Si queremos observar estrellas más lejanas, la contribución de todo el polvo, de la galaxia, y del espacio intergaláctico, es mucho mayor.

La extinción la podemos medir de dos formas. Una sencilla, cuando las distancias son conocidas, y otra un poco más complicada cuando no conocemos la distancia a la estrella.

La sencilla se aplica a estrellas que conocemos su magnitud absoluta (el brillo que tendría la estrella si estuviera a una distancia de 10 parsecs) y su distancia. Se trata de un cálculo sencillo, pero es complicado que podamos utilizarlo ya que lo que nos suele interesar es conocer la distancia de la estrella, así que solo se puede aplicar en contadas ocasiones.

La manera complicada es recurriendo a un parámetro conocido como exceso de color que es la diferencia entre el índice de color observado y el índice de color intrínseco.

El índice de color se define como la diferencia de magnitud observada en el rango del espectro del color azul y la observada en el visible.

De esta forma el índice de color observado sería el que medimos a través de observaciones y el intrínseco lo podemos obtener a través de medidas de otras estrellas del mismo tipo espectral y luminosidad, y que esté cerca de la tierra, que la estrella que queremos medir.

Como una fórmula vale más que 103 palabras, el exceso de color se representa así:

E (B-V) = (B-V) – (B-V)0

Por medio de esta diferencia y conociendo un parámetro (R) que depende de la forma de la curva de extinción (y que es lo realmente complicado de conocer) podemos determinar el valor de la extinción A.

El polvo causante de la extinción estelar se encuentra en casi cualquier parte del universo, pero es más abundante en determinadas zonas conocidas como nebulosas. Si hay objetos en el universo, que llaman realmente la atención por lo bonitos que son, son las nebulosas. Hay de varios tipos, oscuras, de reflexión, de reflexión… pero eso será quizá un tema para otro artículo.

Nota: 1 parsec (pc) equivale a 3,26 años luz o 3,08 x 1016 m. Es una magnitud absurdamente grande y aunque en divulgación y medios de comunicación, se hable de años luz, en astrofísica la unidad de longitud que se utiliza, para distancias superiores al tamaño del sistema solar, es el parsec.

 

La astronomía de los aborígenes australianos

Grabado de la constelación de Orión de la Uranometria de Johann Bayer, (1603). Biblioteca del Observatorio Naval de los Estados Unidos (Fuente: Wikipedia)

Esta entrada fue publicada con anterioridad en Hablando de Ciencia.

En Australia, los aborígenes australianos han habitado esas tierras desde hace más de 65000 años y también ellos se han sentido atraídos por el cielo nocturno. A pesar de que su cultura no se ha basado en una transmisión escrita de sus conocimientos, sí existe una gran transmisión oral. Entre toda la información transmitida oralmente existe la relativa al origen y la dinámica de la naturaleza, basada en la observación y experimentación. Y por supuesto también existe información astronómica relevante, la cual ha llegado hasta nosotros gracias al trabajo de investigación de antropólogos que han sido partícipes de esa tradición oral y la han combinado con el conocimiento de la astronomía más actual.

La observación del cielo se basaba principalmente en la posición y propiedades de las estrellas. Entre estas propiedades se incluían su brillo o color. La posición la determinaban estableciendo relaciones con otros objetos celestes cercanos o su posición respecto al horizonte a lo largo del año.

Alguna de esas estrellas que han estado sujetas a la observación y a la transmisión oral de las observaciones son estrellas muy brillantes y conocidas por todos, como son las gigantes rojas pulsantes Betelgeuse y Aldebarán. Los aborígenes australianos ya se dieron cuenta de la variabilidad y periodicidad en los cambios de brillo de estas estrellas, mucho antes de que los astrónomos modernos descubrieran dicha variabilidad en los siglos XIX y XX.

Sin embargo, la observación de esta variabilidad no respondía a una mera curiosidad astronómica, sino que se debía a la interpretación de sus leyendas y mitologías. Las antiguas civilizaciones europeas no fueron las únicas que representaban su mitología en el cielo mediante la agrupación de estrellas para formar los asterismos que conocemos muy bien en nuestros días. Los aborígenes australianos también creían que las escenas cotidianas de la tierra donde las personas por ejemplo cazaban, también sucedían en el cielo.

Para nosotros, Betelgeuse y Aldebarán pertenecen a las constelaciones de Orión (el cazador), y Tauro (el toro). Para los aborígenes australianos, estas estrellas y sus constelaciones tenían otros significados que ayudan a entender su variabilidad debida a la pulsación.

Dentro de la tradición oral, que ha llegado hasta nuestro tiempo, se encuentra la leyenda de Nyeeruna.

Nyeeruna era un cazador y un mujeriego y, como tal, perseguía a las siete hermanas Yugarilya para casarse con ellas. En su persecución para conseguir a las jóvenes hermanas Yugarilya se encuentra con Kanbugudha, la hermana mayor de las Yugarilya. Para evitar a Kanbugudha, Nyeeruna enfurecido, enciende un fuego mágico con su mano que la hace brillar más. Al mismo tiempo, Kanbugudha enciende, también con fuego mágico, su pie y golpea en la cara a Nyeeruna. El golpe hace que se apague el fuego mágico de Nyeeruna. Humillado, se aleja y Kambugudha suelta a unos dingos, para proteger a las hermanas Yugarilya. Nyeeruna vuelve a intentarlo y enciende el fuego mágico de su mano, pero ahora Kanbugudha ordena a Babba, el padre de los dingos atacar a Nyeeruna que vuelve a apagar el fuego de su mano humillado de nuevo. Kangubudha apaga también el fuego de su pie, pero la historia se repetirá siempre con los fuegos de Nyeeruna y Kangubudha encendiéndose y apagándose ya que Nyeeruna nunca cesará en su empeño de casarse con las jóvenes hermanas Yugarilya.

¿Cómo se interpreta esta leyenda con la variabilidad de Betelgeuse y Aldebarán?

Betelgeuse (Fuente: ALMA (ESO/NAOJ/NRAO)/E. O’Gorman/P. Kervella)

Nyeeruna se asocia con la constelación de Orión que, en la mitología griega, también es considerado el cazador. Las siete hermanas son el cúmulo abierto de Las Pléyades en la constelación de Tauro, que también aparecen en textos como La Ilíada o en la cultura maya donde también son conocidas como las siete hermanas. Kangubudha se identifica como el cúmulo abierto de Las Híades, también en Tauro.

La mano con fuego mágico del cazador está representada por Betelgeuse mientras que el pie con su fuego mágico correspondiente es Aldebarán. Así, los aborígenes interpretaban la variabilidad de estas estrellas mediante la lucha de Nyeeruna con Kangubudha y los dingos. Cada vez que Nyeeruna se acercaba a las hermanas, encendía su mano (Betelgeuse) y esta brillaba más para después de recibir la patada de Kangubudha con su pie encendido (Aldebarán) dejar de brillar. En el segundo intento, Nyeeruna volvía a encender su mano, pero el padre de los dingos al evitar que se acercara a las hermanas hacía que su mano se apagara de nuevo. Solo cuando las hermanas fuera de peligro, Kangubudha también apaga su pie.

Actualmente conocemos muy bien los periodos en los que Betelgeuse alcanza su máximo brillo. Este máximo principal ocurre, aproximadamente, una vez al año (cuando Nyeeruna enciende su mano por primera vez), mientras que existe un máximo secundario cada 5.6 años. En el caso de Aldebarán, las variaciones de brillo no siguen un periodo regular, de ahí que solo cuando Kangubudha estimaba que el peligro había pasado apagaba su pie.

Queda entender como los aborígenes medían ese cambio de brillo. Aunque no está muy claro, se piensa que utilizaron el mismo método que usó Herschel, es decir, comparaban el brillo con una estrella cercana que no tuviera cambios en su brillo. Además, esos cambios de brillo debían de ser de, al menos, 0.1 magnitudes ya que es el límite que puede detectar el ojo humano a simple vista.

A pesar de no mantener un registro escrito y de contar con una tradición oral, queda patente que los aborígenes australianos eran buenos astrónomos también. Además, aunque la explicación que dieron a los cambios de brillo de estas estrellas diste mucho de tener la base física de la que disponemos ahora, es interesante ver cómo se las arreglaron para explicar esos cambios y, también, para entender la evolución del pensamiento humano en lo relativo a la observación astronómica desde un punto de vista diferente al que conocemos.

Referencias

Hamacher, D. Observation of red-giant variable stars by Aboriginal Australians.

Leaman, T. Hamacher, D. Aboriginal Astronomical Traditions from Ooldea, South Australia.

Instrumentación astrofísica

Ha pasado mucho tiempo desde que a los primeros astrónomos les bastaba con levantar la cabeza, mirar al cielo y hacer algún descubrimiento.

La necesidad de estudiar la luz que nos llega de los cuerpos celestes ha necesitado de avances en muchos campos distintos. Desde la física más básica a los materiales. Desde la química de laboratorio a la óptica. Desde la electrónica y la programación a la ingeniería mecánica más compleja.

La investigación en astrofísica no consiste solo en la observación y en el análisis de datos, también necesita investigar y desarrollar los dispositivos e instrumentos que permitan esa observación y análisis.

Sin embargo, no son los propios astrofísicos los que investigan y desarrollan esos instrumentos. Colaboran definiendo los requisitos que han de cumplir, pero luego son los ingenieros, cuyo conocimiento es más apropiado, los que se encargan del diseño y fabricación.

Es más, no suelen ser los propios centros de investigación, ni los ingenieros que investigan y trabajan ahí, los que desarrollan completamente esa tecnología. La investigación en astrofísica necesita de la industria especializada para la fabricación de la instrumentación.

A veces se piensa que la investigación en astrofísica es tirar el dinero del contribuyente para que se hagan fotos impresionantes. Pero no, además de cumplir con los objetivos de conocer el universo, el dinero del contribuyente vuelve al contribuyente a través de la industria que fabrica los instrumentos que los astrofísicos necesitan.

Por otro lado, esos instrumentos no se quedan únicamente en los centros de investigación en astrofísica. La tecnología desarrollada es posteriormente transferida a la sociedad en forma de cámaras fotográficas que son incorporadas en nuestros teléfonos móviles, de formas de comunicación inalámbrica a través de WiFi o de tratamiento de imagen para detectar mejor y más rápido posibles enfermedades que, si se retrasara su diagnóstico, serían mortales.

Esta reflexión viene a raíz de este vídeo publicado por el Instituto Astrofísico de Canarias en el que muestra la instrumentación astrofísica que se desarrolla para poder estar en la primera línea de investigación.

¡Qué lo disfrutéis!

La estrella γ Cas y sus emisiones de rayos X

Aunque parezca lo contrario a simple vista, no todas las estrellas son iguales. No sólo evolucionan de manera distinta sino que cada estrella o tipos de estrellas, viven una vida diferente.

Algunas estrellas evolucionan más rápido que otras y mueren de una manera o de otra. Muchas son variables, pulsantes de varios tipos o viven en parejas o sistemas múltiples que influyen las unas en las otras. Sin embargo, cuando las miramos a simple vista o con el telescopio sólo vemos una pequeña parte de lo que les ocurre.

A pesar de que parezcan relativamente tranquilas si nos vamos a otras partes del espectro electromagnético nos damos cuenta de que no lo son. Podemos llegar a detectar fenómenos extremadamente violentos y lo peor de todo es que no siempre sabemos a qué se deben. Engrosando la lista de problemas que hay que seguir investigando.

Uno de estos casos es la estrella γ Cas en la constelación de Casiopea, muy cerca de la estrella Polar. Con una magnitud de 2.15 es visible a simple vista incluso desde las ciudades en el hemisferio Norte. Se puede identificar fácilmente ya que es la estrella que está justo en el centro de la W que parece formar la constelación.

casiopeacdc

Constelación de Casiopea (Fuente: Daniel Marín)

A simple vista es una estrella normal. Se trata de una estrella de clase Be que forma parte de un sistema binario, es decir está acompañada de otra estrella que no se ha podido detectar a través de telescopios, sino a través de medidas indirectas de su movimiento alrededor del centro de masas común del sistema formado las dos estrellas. Esta estrella compañera se sabe que es un objeto muy compacto, y muy caliente, de alrededor de 1 masa solar, es decir, la masa de esta compañera sería similar a la de nuestro Sol.

Hace 50 años se descubrió que γ Cas tenía emisiones intensas de rayos X, pero no encajaban dentro de las típicas emisiones de rayos X que tienen las estrellas de tipo Be. La luminosidad de estos rayos X estaba entre la luminosidad de las Be típicas y la de las variables cataclísmicas.

Entre los modelos que se propusieron para explicar estas emisiones de rayos X, se pensaba que la estrella compañera podría ser una estrella de neutrones. De esta manera, la estrella Be acretaba materia directamente a la estrella de neutrones de igual manera que lo haría una variable cataclísmica. Sin embargo, cuando este modelo se aplicaba a todas las estrellas del mismo tipo, por ejemplo a X Per, en la constelación de Perseo, el modelo no reflejaba los mismos resultados.

En un artículo publicado recientemente K. Postnov, L. Osnikova y J.M. Torrejón han desarrollado un modelo a partir del anterior pero teniendo en cuenta algo que había pasado desapercibido. Una estrella de neutrones no es una estrella normal. En una variable cataclísmica, el material de la estrella cae sobre la superficie de una enana blanca o enana roja y, en pocas palabras, se calienta hasta emitir rayos X. En el modelo que han desarrollado Postnov, Osnikova y Torrejón, tienen en cuenta que en una estrella de neutrones la materia no llega a la superficie ya que por un lado tiene que penetrar el intenso campo magnético de la estrella de neutrones que lo caracteriza y por otro tiene que vencer la fuerza centrífuga generada por la rápida rotación de la estrella de neutrones. Estas barreras evitarían que la materia cayera a la superficie de la estrella generando una situación a la que llaman fase de propulsión o fase propulsora.

Teniendo en cuenta este mecanismo, se explicarían, de manera cuantitativa, las luminosidades de las emisiones de estrellas del tipo γ Cas. Eso sí, como siempre, esto es sólo un modelo teórico. Puede que aparezcan otros que expliquen igual de bien, o mejor, el caso de este tipo de estrellas, pero de momento es un buen comienzo para seguir investigando.

Referencias

Me enteré de esta estudio a través de una noticia de la Agencia SINC: Descubierto el origen de la radiación de rayos X de una estrella vecina

El artículo original:

A propelling neutron star in the enigmatic Be-star γ Cassiopeia. K. Postnov, L. Oskinova, J.M. Torrejón. ArXiv: 1610.07799v1 [astro-ph.HE]

En Navidad y el resto del año, ¡mide!

Como dice Javier Fernández Panadero autor del blog La Ciencia para todos y de varios libros, entre ellos Aproxímate, “Mide, calcula, estima, comprueba, decide… Toma posesión del mundo, conquístalo”. Es algo con lo que estoy totalmente de acuerdo. No dejes que nadie te diga que algo es de una determinada manera. Mídelo, haz las estimaciones necesarias, calcúlalo, comprueba que lo que has medido es así y decide si estás de acuerdo o no.

Se podría pensar que la Astronomía y la Astrofísica son unas ramas de la ciencia dónde medir sin una instrumentación basada en tecnología precisa es imposible. Incluso, se puede pensar que un aficionado lo único que podría hacer es observar a través de un telescopio y quedarse embobado disfrutando de lo que nos ofrece el universo. En realidad, no es así. Es más, los primeros astrónomos estaban más preocupados por observar y medir lo que veían a simple vista. No podía ser de otro modo, ya que no disponían de la tecnología ni instrumentación necesaria para hacer algo más complicado. Y la verdad es que hicieron grandes descubrimientos de esta manera.

Vamos a seguir los pasos de estos astrónomos.

Seguro que has hecho algún viaje. Algún viaje lo habrás hecho a alguna ciudad más al norte que la tuya y otros viajes los habrás  hecho a alguna ciudad más al sur. Si has tenido suerte y el cielo estaba despejado por la noche, habrás notado que el cielo es ligeramente distinto. Si has ido al sur, habrás visto estrellas que no podías ver desde tu casa y si has ido al norte, es probable que te hayas dado cuenta que algunas de las estrellas que veías desde tu casa, no las puedes ver.

Cojamos una estrella bien conocida. Por ejemplo, α Ursae Minoris más conocida como la estrella polar, o Polaris. Si no sabes dónde está, aquí puedes ver como localizarla.

Aunque no siempre ha sido así, la estrella polar indica el punto más cercano al polo norte celeste, que es en una primera aproximación, el punto más cercano al polo norte geográfico. Si durante un tiempo prolongado durante una noche, nos quedamos mirando a la estrella polar, veremos que el resto de estrellas giran alrededor de ella, permaneciendo prácticamente inmóvil a lo largo de la noche.

Antes de seguir, hay que dejar claro que esto sólo es válido en el hemisferio norte, ya que desde el hemisferio sur, es imposible ver la estrella polar.

El hecho de que indique donde está el polo norte geográfico es importante. Si nos movemos hacia el norte, la estrella polar cada vez estará más alta en el cielo, es decir, cada vez se alejará más del horizonte. En el polo norte geográfico, se encontrará en el punto más alto sobre nuestras cabezas, conocido como cénit. Si nos movemos hacia el sur, la estrella polar estará cada vez más baja en el cielo y se aproximará al horizonte. En el ecuador, estará justo en el horizonte.

Sabiendo cómo se mueve desde una posición más baja a una más alta cuando nos movemos de sur a norte y que está inmóvil a lo largo de la noche, la estrella polar es una firme candidata para determinar la latitud de cualquier lugar del hemisferio norte.

Esto se sabe desde hace mucho tiempo y los primeros astrónomos, geógrafos y navegantes han utilizado la estrella polar para saber la latitud de una ciudad desde siempre.

La latitud la podemos determinar midiendo la altura a la que está la estrella polar sobre el horizonte. Según la Wikipedia “La latitud es la distancia angular entre la línea ecuatorial (el ecuador), y un punto determinado de la Tierra, medida a lo largo del meridiano en el que se encuentra dicho punto. Según el hemisferio en el que se sitúe el punto, puede ser latitud norte o sur”. Son muchas palabras pero, como lo que queremos es medir, calcular, estimar y comprobar, nos basta con saber cuál es la distancia, en grados, medida sobre el cielo desde el ecuador hasta el lugar en el que nos encontramos. Pero eso es equivalente a decir que la latitud es la altura de la estrella polar sobre el horizonte

¿Qué complicado instrumento desarrollado por el ser humano tenemos que utilizar? Ninguno. Simplemente tu mano.

En una primera aproximación (recuerda que estamos haciendo estimaciones), si extiendes el brazo dependiendo de si extiendes también la mano, el puño o sólo un dedo puedes estimar cuantos grados hay en el cielo. La siguiente imagen es una guía para saber cuántos grados en el cielo representa tu mano.

czlvxi-w8au_k4s_toakidin-learntoskywatch

(Fuente: Twitter vía Tokaidin)

Vamos a poner en práctica todo esto con un ejemplo.

Supongamos que estamos en Madrid. A pesar de la contaminación lumínica todavía somos capaces de ver la estrella polar. Extendemos nuestro brazo y medimos la altura en grados desde el horizonte a la estrella polar.

Probamos extendiendo la mano como en la figura #1 y, como nos quedamos cortos, superponemos la mano como en la figura #2. Vemos que llegamos a la estrella polar. En total hemos medido 40o. Podemos dar como bueno este valor o volver a medir. Para asegurarnos que hemos superpuesto las manos correctamente, vamos a usar otra posición de las manos, por ejemplo extendemos la mano como en la figura #3 y vamos superponiendo esta posición hasta llegar a la estrella polar. Vemos que la tenemos que superponer 4 veces. Por lo tanto, volvemos a medir 40o. Cambiar la forma en que medimos es fundamental para asegurarnos que hacemos las cosas bien y no nos engañamos con el resultado.

Hasta este momento hemos estimado, medido y calculado. Ahora tenemos que comprobar que nuestro valor es correcto. Vamos de nuevo a la página de la Wikipedia de Madrid y vemos lo siguiente:

coordenadas

Coordenadas de Madrid (Fuente: Wikipedia)

Vemos que la latitud de Madrid es 40025’’08” Norte. Parece que nuestro valor es correcto, pero ¿estamos seguros de ello? Podría ser que la Wikipedia estuviera equivocada o que quién escribió el artículo sobre Madrid nos quisiera engañar. No podemos tomar una decisión todavía, necesitamos comprobar otras fuentes. Vamos a probar en la web del Instituto Geográfico Nacional. Si vamos a la reseña de la estación permanente GNSS de Madrid (Global Navigation Satellite Service), vemos que la latitud que indica es 40° 26′ 45,00901”, que es muy parecida a la que nos daba la Wikipedia. Podríamos seguir buscando referencias a la latitud de Madrid, pero siempre vamos a ver que está cerca de los 400 de latitud. Es decir, decidimos que nuestra medida es aceptablemente válida.

¿Por qué hay una diferencia entre lo que hemos medido nosotros (aproximadamente 400), lo que dice Wikipedia y lo que dice el IGN? Por varias razones.

Primero porque la estrella polar no está exactamente en el polo norte celeste sino que hay una desviación de casi 1o en su posición.

Segundo, no todas las manos son igual de grandes, así que habrá diferencias que pueden llegar a ser considerables (usando el esquema de la figura de arriba). Sobre todo si comparamos la mano de un niño con la de un jugador de baloncesto de 2 m de altura.

Tercero, y más importante, porque toda medida siempre está acompañada de un error. El instrumento con el que midamos tiene asociado un error de medida. Por ejemplo si medimos con una regla que sólo tiene marcas de milímetros, el error que mediremos será de ± 1 milímetro. Además hay que tener en cuenta que cada vez que midamos obtendremos valores ligeramente diferentes por el simple hecho de medir. Al medir con nuestra mano, el error es bastante alto, De hecho es tan algo que si siguiéramos este procedimiento en Albacete, Madrid y Zamora, a pesar de estar a diferentes latitudes (aunque muy próximas entre sí), no llegaríamos a notar diferencia entre ellas.

En cualquier caso, para tener una estimación, que era lo que perseguíamos y lo que perseguían los antiguos astrónomos, geógrafos y navegantes lo que obtenemos es un valor muy bueno.

Vuelvo a citar a Javier Fernández Panadero, para que no se os olvide: “Mide, calcula, estima, comprueba y decide”.

Referencias

Aproxímate. Mide, calcula, estima. La ciencia para todos. Javier Fernández Panadero

Detectando planetas a través de la Química de sus estrellas

La búsqueda de planetas extrasolares se ha convertido en uno de los campos de investigación más activos en astronomía en los últimos años.

El uso de diferentes métodos de detección es muy necesario, ya que además de detectar el planeta, hay que confirmar su existencia real para asegurarnos de que no se trata de una señal falsa. Esto es especialmente importante cuando se usa el método de la velocidad radial.

Sin embargo, si hay algo que en Astronomía y en Astrofísica se utiliza con mucha frecuencia, y es muy conocido y útil, es la espectroscopía, es decir, estudiar los espectros de las estrellas para averiguar su composición química y la abundancia de cada uno de los elementos químicos que la forman.

La espectroscopía podría convertirse en una técnica importante para la búsqueda de vida extraterrestre, pero también puede llegar a ser útil en la búsqueda de planetas extrasolares.

Los planetas se forman a partir de la misma nube de gas en la que se forman las estrellas. Estas nubes están principalmente formadas por hidrógeno y helio, pero también por elementos químicos más pesados.

Cuando los planetas se empiezan a formar incorporan los elementos más pesados en su interior dejando los gases más ligeros libres para que se incorporen a la estrella en las fases más tardías de la evolución. Esto hace que las estrellas formadas tengan un déficit de elementos pesados que no tendrían en caso de no tener planetas a su alrededor.

missing-refractories

Elementos deficitarios en el Sol debido, probablemente a los planetas rocosos interiores

Una de las estrellas que mejor conocemos químicamente es nuestro Sol. Podríamos utilizarlo para compararlo con otras estrellas y ver si detectando su composición química podemos averiguar si hay una deficiencia de elementos pesados al igual que en el Sol que nos permita decir si hay planetas o no.

El problema es que no todas las estrellas son como el Sol, y sólo se podría usar este método para estrellas de tipo Solar.

Por suerte, el Sol es una estrella atípica en el sentido de que está sola. La mayoría de las estrellas están ligadas gravitacionalmente a otras estrellas formando sistemas múltiples, principalmente binarios.

En los sistemas binarios, ambas estrellas se formaron en la misma nube, por lo que es de esperar que ambas tengan aproximadamente el mismo patrón de abundancias de elementos químicos. Si además, las dos estrellas son gemelas, es decir, tienen los mismos parámetros estelares (tamaño, temperatura, etc), un análisis detallado de sus espectros puede ayudar a determinar pequeñas diferencias en su composición que pudieran ser debidas a la formación de planetas a su alrededor, es decir planetas que podrían haber incorporado parte del material de la nube generando un déficit de elementos pesados en una de las dos estrellas.

16-cyg

Diferencia de abundancias frente a la temperatura de condensación en el sistema 16 Cyg

Otra situación interesante se puede dar debido a la gravedad. Un planeta que debido a inestabilidades en su órbita cae hacia su estrella y termina siendo engullido por esta. En este caso, la composición química del planeta, con todos sus elementos más pesados, terminarían formando parte de la estrella alterando la composición química de la atmósfera estelar. Pongamos como ejemplo estrellas de tipo solar. Estas estrellas según van evolucionando empiezan a tener un déficit de Litio en su composición. Un planeta que hubiera incorporado litio en su formación, y que fuera engullido por su estrella, cedería todo ese Litio a la estrella y por lo tanto aparecería litio en su espectro cuando, en el caso de que no existiera ningún planeta, no debería haber.

De momento las evidencias de que este método de detección de planetas sea fiable son pocas. Se han estudiado casos como los del sistema binario 16 Cyg o HIP 11915, pero todavía no se han detectado anomalías en las abundancias de elementos químicos que impliquen evidencias. Por ello hay que seguir estudiando estrellas con planetas confirmados y realizar estudios de precisión que puedan ayudar, no sólo a detectar planetas sino también a entender mejor la formación estelar y planetaria.

Referencias:

Meléndez, I. Ramirez. Planet signatures in the chemical composition of Sun-like stars. arXiv:1611.04064v1 [astro-ph.EP]. 13 Nov 2016