Instrumentación astrofísica

Ha pasado mucho tiempo desde que a los primeros astrónomos les bastaba con levantar la cabeza, mirar al cielo y hacer algún descubrimiento.

La necesidad de estudiar la luz que nos llega de los cuerpos celestes ha necesitado de avances en muchos campos distintos. Desde la física más básica a los materiales. Desde la química de laboratorio a la óptica. Desde la electrónica y la programación a la ingeniería mecánica más compleja.

La investigación en astrofísica no consiste solo en la observación y en el análisis de datos, también necesita investigar y desarrollar los dispositivos e instrumentos que permitan esa observación y análisis.

Sin embargo, no son los propios astrofísicos los que investigan y desarrollan esos instrumentos. Colaboran definiendo los requisitos que han de cumplir, pero luego son los ingenieros, cuyo conocimiento es más apropiado, los que se encargan del diseño y fabricación.

Es más, no suelen ser los propios centros de investigación, ni los ingenieros que investigan y trabajan ahí, los que desarrollan completamente esa tecnología. La investigación en astrofísica necesita de la industria especializada para la fabricación de la instrumentación.

A veces se piensa que la investigación en astrofísica es tirar el dinero del contribuyente para que se hagan fotos impresionantes. Pero no, además de cumplir con los objetivos de conocer el universo, el dinero del contribuyente vuelve al contribuyente a través de la industria que fabrica los instrumentos que los astrofísicos necesitan.

Por otro lado, esos instrumentos no se quedan únicamente en los centros de investigación en astrofísica. La tecnología desarrollada es posteriormente transferida a la sociedad en forma de cámaras fotográficas que son incorporadas en nuestros teléfonos móviles, de formas de comunicación inalámbrica a través de WiFi o de tratamiento de imagen para detectar mejor y más rápido posibles enfermedades que, si se retrasara su diagnóstico, serían mortales.

Esta reflexión viene a raíz de este vídeo publicado por el Instituto Astrofísico de Canarias en el que muestra la instrumentación astrofísica que se desarrolla para poder estar en la primera línea de investigación.

¡Qué lo disfrutéis!

La estrella γ Cas y sus emisiones de rayos X

Aunque parezca lo contrario a simple vista, no todas las estrellas son iguales. No sólo evolucionan de manera distinta sino que cada estrella o tipos de estrellas, viven una vida diferente.

Algunas estrellas evolucionan más rápido que otras y mueren de una manera o de otra. Muchas son variables, pulsantes de varios tipos o viven en parejas o sistemas múltiples que influyen las unas en las otras. Sin embargo, cuando las miramos a simple vista o con el telescopio sólo vemos una pequeña parte de lo que les ocurre.

A pesar de que parezcan relativamente tranquilas si nos vamos a otras partes del espectro electromagnético nos damos cuenta de que no lo son. Podemos llegar a detectar fenómenos extremadamente violentos y lo peor de todo es que no siempre sabemos a qué se deben. Engrosando la lista de problemas que hay que seguir investigando.

Uno de estos casos es la estrella γ Cas en la constelación de Casiopea, muy cerca de la estrella Polar. Con una magnitud de 2.15 es visible a simple vista incluso desde las ciudades en el hemisferio Norte. Se puede identificar fácilmente ya que es la estrella que está justo en el centro de la W que parece formar la constelación.

casiopeacdc

Constelación de Casiopea (Fuente: Daniel Marín)

A simple vista es una estrella normal. Se trata de una estrella de clase Be que forma parte de un sistema binario, es decir está acompañada de otra estrella que no se ha podido detectar a través de telescopios, sino a través de medidas indirectas de su movimiento alrededor del centro de masas común del sistema formado las dos estrellas. Esta estrella compañera se sabe que es un objeto muy compacto, y muy caliente, de alrededor de 1 masa solar, es decir, la masa de esta compañera sería similar a la de nuestro Sol.

Hace 50 años se descubrió que γ Cas tenía emisiones intensas de rayos X, pero no encajaban dentro de las típicas emisiones de rayos X que tienen las estrellas de tipo Be. La luminosidad de estos rayos X estaba entre la luminosidad de las Be típicas y la de las variables cataclísmicas.

Entre los modelos que se propusieron para explicar estas emisiones de rayos X, se pensaba que la estrella compañera podría ser una estrella de neutrones. De esta manera, la estrella Be acretaba materia directamente a la estrella de neutrones de igual manera que lo haría una variable cataclísmica. Sin embargo, cuando este modelo se aplicaba a todas las estrellas del mismo tipo, por ejemplo a X Per, en la constelación de Perseo, el modelo no reflejaba los mismos resultados.

En un artículo publicado recientemente K. Postnov, L. Osnikova y J.M. Torrejón han desarrollado un modelo a partir del anterior pero teniendo en cuenta algo que había pasado desapercibido. Una estrella de neutrones no es una estrella normal. En una variable cataclísmica, el material de la estrella cae sobre la superficie de una enana blanca o enana roja y, en pocas palabras, se calienta hasta emitir rayos X. En el modelo que han desarrollado Postnov, Osnikova y Torrejón, tienen en cuenta que en una estrella de neutrones la materia no llega a la superficie ya que por un lado tiene que penetrar el intenso campo magnético de la estrella de neutrones que lo caracteriza y por otro tiene que vencer la fuerza centrífuga generada por la rápida rotación de la estrella de neutrones. Estas barreras evitarían que la materia cayera a la superficie de la estrella generando una situación a la que llaman fase de propulsión o fase propulsora.

Teniendo en cuenta este mecanismo, se explicarían, de manera cuantitativa, las luminosidades de las emisiones de estrellas del tipo γ Cas. Eso sí, como siempre, esto es sólo un modelo teórico. Puede que aparezcan otros que expliquen igual de bien, o mejor, el caso de este tipo de estrellas, pero de momento es un buen comienzo para seguir investigando.

Referencias

Me enteré de esta estudio a través de una noticia de la Agencia SINC: Descubierto el origen de la radiación de rayos X de una estrella vecina

El artículo original:

A propelling neutron star in the enigmatic Be-star γ Cassiopeia. K. Postnov, L. Oskinova, J.M. Torrejón. ArXiv: 1610.07799v1 [astro-ph.HE]

En Navidad y el resto del año, ¡mide!

Como dice Javier Fernández Panadero autor del blog La Ciencia para todos y de varios libros, entre ellos Aproxímate, “Mide, calcula, estima, comprueba, decide… Toma posesión del mundo, conquístalo”. Es algo con lo que estoy totalmente de acuerdo. No dejes que nadie te diga que algo es de una determinada manera. Mídelo, haz las estimaciones necesarias, calcúlalo, comprueba que lo que has medido es así y decide si estás de acuerdo o no.

Se podría pensar que la Astronomía y la Astrofísica son unas ramas de la ciencia dónde medir sin una instrumentación basada en tecnología precisa es imposible. Incluso, se puede pensar que un aficionado lo único que podría hacer es observar a través de un telescopio y quedarse embobado disfrutando de lo que nos ofrece el universo. En realidad, no es así. Es más, los primeros astrónomos estaban más preocupados por observar y medir lo que veían a simple vista. No podía ser de otro modo, ya que no disponían de la tecnología ni instrumentación necesaria para hacer algo más complicado. Y la verdad es que hicieron grandes descubrimientos de esta manera.

Vamos a seguir los pasos de estos astrónomos.

Seguro que has hecho algún viaje. Algún viaje lo habrás hecho a alguna ciudad más al norte que la tuya y otros viajes los habrás  hecho a alguna ciudad más al sur. Si has tenido suerte y el cielo estaba despejado por la noche, habrás notado que el cielo es ligeramente distinto. Si has ido al sur, habrás visto estrellas que no podías ver desde tu casa y si has ido al norte, es probable que te hayas dado cuenta que algunas de las estrellas que veías desde tu casa, no las puedes ver.

Cojamos una estrella bien conocida. Por ejemplo, α Ursae Minoris más conocida como la estrella polar, o Polaris. Si no sabes dónde está, aquí puedes ver como localizarla.

Aunque no siempre ha sido así, la estrella polar indica el punto más cercano al polo norte celeste, que es en una primera aproximación, el punto más cercano al polo norte geográfico. Si durante un tiempo prolongado durante una noche, nos quedamos mirando a la estrella polar, veremos que el resto de estrellas giran alrededor de ella, permaneciendo prácticamente inmóvil a lo largo de la noche.

Antes de seguir, hay que dejar claro que esto sólo es válido en el hemisferio norte, ya que desde el hemisferio sur, es imposible ver la estrella polar.

El hecho de que indique donde está el polo norte geográfico es importante. Si nos movemos hacia el norte, la estrella polar cada vez estará más alta en el cielo, es decir, cada vez se alejará más del horizonte. En el polo norte geográfico, se encontrará en el punto más alto sobre nuestras cabezas, conocido como cénit. Si nos movemos hacia el sur, la estrella polar estará cada vez más baja en el cielo y se aproximará al horizonte. En el ecuador, estará justo en el horizonte.

Sabiendo cómo se mueve desde una posición más baja a una más alta cuando nos movemos de sur a norte y que está inmóvil a lo largo de la noche, la estrella polar es una firme candidata para determinar la latitud de cualquier lugar del hemisferio norte.

Esto se sabe desde hace mucho tiempo y los primeros astrónomos, geógrafos y navegantes han utilizado la estrella polar para saber la latitud de una ciudad desde siempre.

La latitud la podemos determinar midiendo la altura a la que está la estrella polar sobre el horizonte. Según la Wikipedia “La latitud es la distancia angular entre la línea ecuatorial (el ecuador), y un punto determinado de la Tierra, medida a lo largo del meridiano en el que se encuentra dicho punto. Según el hemisferio en el que se sitúe el punto, puede ser latitud norte o sur”. Son muchas palabras pero, como lo que queremos es medir, calcular, estimar y comprobar, nos basta con saber cuál es la distancia, en grados, medida sobre el cielo desde el ecuador hasta el lugar en el que nos encontramos. Pero eso es equivalente a decir que la latitud es la altura de la estrella polar sobre el horizonte

¿Qué complicado instrumento desarrollado por el ser humano tenemos que utilizar? Ninguno. Simplemente tu mano.

En una primera aproximación (recuerda que estamos haciendo estimaciones), si extiendes el brazo dependiendo de si extiendes también la mano, el puño o sólo un dedo puedes estimar cuantos grados hay en el cielo. La siguiente imagen es una guía para saber cuántos grados en el cielo representa tu mano.

czlvxi-w8au_k4s_toakidin-learntoskywatch

(Fuente: Twitter vía Tokaidin)

Vamos a poner en práctica todo esto con un ejemplo.

Supongamos que estamos en Madrid. A pesar de la contaminación lumínica todavía somos capaces de ver la estrella polar. Extendemos nuestro brazo y medimos la altura en grados desde el horizonte a la estrella polar.

Probamos extendiendo la mano como en la figura #1 y, como nos quedamos cortos, superponemos la mano como en la figura #2. Vemos que llegamos a la estrella polar. En total hemos medido 40o. Podemos dar como bueno este valor o volver a medir. Para asegurarnos que hemos superpuesto las manos correctamente, vamos a usar otra posición de las manos, por ejemplo extendemos la mano como en la figura #3 y vamos superponiendo esta posición hasta llegar a la estrella polar. Vemos que la tenemos que superponer 4 veces. Por lo tanto, volvemos a medir 40o. Cambiar la forma en que medimos es fundamental para asegurarnos que hacemos las cosas bien y no nos engañamos con el resultado.

Hasta este momento hemos estimado, medido y calculado. Ahora tenemos que comprobar que nuestro valor es correcto. Vamos de nuevo a la página de la Wikipedia de Madrid y vemos lo siguiente:

coordenadas

Coordenadas de Madrid (Fuente: Wikipedia)

Vemos que la latitud de Madrid es 40025’’08” Norte. Parece que nuestro valor es correcto, pero ¿estamos seguros de ello? Podría ser que la Wikipedia estuviera equivocada o que quién escribió el artículo sobre Madrid nos quisiera engañar. No podemos tomar una decisión todavía, necesitamos comprobar otras fuentes. Vamos a probar en la web del Instituto Geográfico Nacional. Si vamos a la reseña de la estación permanente GNSS de Madrid (Global Navigation Satellite Service), vemos que la latitud que indica es 40° 26′ 45,00901”, que es muy parecida a la que nos daba la Wikipedia. Podríamos seguir buscando referencias a la latitud de Madrid, pero siempre vamos a ver que está cerca de los 400 de latitud. Es decir, decidimos que nuestra medida es aceptablemente válida.

¿Por qué hay una diferencia entre lo que hemos medido nosotros (aproximadamente 400), lo que dice Wikipedia y lo que dice el IGN? Por varias razones.

Primero porque la estrella polar no está exactamente en el polo norte celeste sino que hay una desviación de casi 1o en su posición.

Segundo, no todas las manos son igual de grandes, así que habrá diferencias que pueden llegar a ser considerables (usando el esquema de la figura de arriba). Sobre todo si comparamos la mano de un niño con la de un jugador de baloncesto de 2 m de altura.

Tercero, y más importante, porque toda medida siempre está acompañada de un error. El instrumento con el que midamos tiene asociado un error de medida. Por ejemplo si medimos con una regla que sólo tiene marcas de milímetros, el error que mediremos será de ± 1 milímetro. Además hay que tener en cuenta que cada vez que midamos obtendremos valores ligeramente diferentes por el simple hecho de medir. Al medir con nuestra mano, el error es bastante alto, De hecho es tan algo que si siguiéramos este procedimiento en Albacete, Madrid y Zamora, a pesar de estar a diferentes latitudes (aunque muy próximas entre sí), no llegaríamos a notar diferencia entre ellas.

En cualquier caso, para tener una estimación, que era lo que perseguíamos y lo que perseguían los antiguos astrónomos, geógrafos y navegantes lo que obtenemos es un valor muy bueno.

Vuelvo a citar a Javier Fernández Panadero, para que no se os olvide: “Mide, calcula, estima, comprueba y decide”.

Referencias

Aproxímate. Mide, calcula, estima. La ciencia para todos. Javier Fernández Panadero

Detectando planetas a través de la Química de sus estrellas

La búsqueda de planetas extrasolares se ha convertido en uno de los campos de investigación más activos en astronomía en los últimos años.

El uso de diferentes métodos de detección es muy necesario, ya que además de detectar el planeta, hay que confirmar su existencia real para asegurarnos de que no se trata de una señal falsa. Esto es especialmente importante cuando se usa el método de la velocidad radial.

Sin embargo, si hay algo que en Astronomía y en Astrofísica se utiliza con mucha frecuencia, y es muy conocido y útil, es la espectroscopía, es decir, estudiar los espectros de las estrellas para averiguar su composición química y la abundancia de cada uno de los elementos químicos que la forman.

La espectroscopía podría convertirse en una técnica importante para la búsqueda de vida extraterrestre, pero también puede llegar a ser útil en la búsqueda de planetas extrasolares.

Los planetas se forman a partir de la misma nube de gas en la que se forman las estrellas. Estas nubes están principalmente formadas por hidrógeno y helio, pero también por elementos químicos más pesados.

Cuando los planetas se empiezan a formar incorporan los elementos más pesados en su interior dejando los gases más ligeros libres para que se incorporen a la estrella en las fases más tardías de la evolución. Esto hace que las estrellas formadas tengan un déficit de elementos pesados que no tendrían en caso de no tener planetas a su alrededor.

missing-refractories

Elementos deficitarios en el Sol debido, probablemente a los planetas rocosos interiores

Una de las estrellas que mejor conocemos químicamente es nuestro Sol. Podríamos utilizarlo para compararlo con otras estrellas y ver si detectando su composición química podemos averiguar si hay una deficiencia de elementos pesados al igual que en el Sol que nos permita decir si hay planetas o no.

El problema es que no todas las estrellas son como el Sol, y sólo se podría usar este método para estrellas de tipo Solar.

Por suerte, el Sol es una estrella atípica en el sentido de que está sola. La mayoría de las estrellas están ligadas gravitacionalmente a otras estrellas formando sistemas múltiples, principalmente binarios.

En los sistemas binarios, ambas estrellas se formaron en la misma nube, por lo que es de esperar que ambas tengan aproximadamente el mismo patrón de abundancias de elementos químicos. Si además, las dos estrellas son gemelas, es decir, tienen los mismos parámetros estelares (tamaño, temperatura, etc), un análisis detallado de sus espectros puede ayudar a determinar pequeñas diferencias en su composición que pudieran ser debidas a la formación de planetas a su alrededor, es decir planetas que podrían haber incorporado parte del material de la nube generando un déficit de elementos pesados en una de las dos estrellas.

16-cyg

Diferencia de abundancias frente a la temperatura de condensación en el sistema 16 Cyg

Otra situación interesante se puede dar debido a la gravedad. Un planeta que debido a inestabilidades en su órbita cae hacia su estrella y termina siendo engullido por esta. En este caso, la composición química del planeta, con todos sus elementos más pesados, terminarían formando parte de la estrella alterando la composición química de la atmósfera estelar. Pongamos como ejemplo estrellas de tipo solar. Estas estrellas según van evolucionando empiezan a tener un déficit de Litio en su composición. Un planeta que hubiera incorporado litio en su formación, y que fuera engullido por su estrella, cedería todo ese Litio a la estrella y por lo tanto aparecería litio en su espectro cuando, en el caso de que no existiera ningún planeta, no debería haber.

De momento las evidencias de que este método de detección de planetas sea fiable son pocas. Se han estudiado casos como los del sistema binario 16 Cyg o HIP 11915, pero todavía no se han detectado anomalías en las abundancias de elementos químicos que impliquen evidencias. Por ello hay que seguir estudiando estrellas con planetas confirmados y realizar estudios de precisión que puedan ayudar, no sólo a detectar planetas sino también a entender mejor la formación estelar y planetaria.

Referencias:

Meléndez, I. Ramirez. Planet signatures in the chemical composition of Sun-like stars. arXiv:1611.04064v1 [astro-ph.EP]. 13 Nov 2016

¿Qué es una estrella?

 

La primera definición de estrella que escuché fue la siguiente: “Una estrella es una esfera autogravitante de gas”. Esta definición es correcta en el sentido que, efectivamente, es una esfera sometida a la acción de la fuerza de la gravedad, es decir, la propia masa de la estrella, compuesta de gas, y el hecho de que la fuerza gravitatoria tenga una simetría radial hace que tome la forma de una esfera.

Sin embargo, ¿es esta definición no es completa? Debería decir algo sobre si se puede ver o no, es decir, sobre si emite radiación en forma de luz visible, infrarroja, ultravioleta…

Se dice que una estrella comienza su etapa de secuencia principal, esto es, empieza su vida como estrella, cuando hay reacciones nucleares de fusión en su núcleo y por lo tanto empieza a emitir radiación.

betelgeuse_star

Imagen de la estrella supergigante roja Betelgeuse, en la constelación de Orión. (Fuente: Hubble Space Telescope. Imagen mejorada por NASA)

Las reacciones nucleares de fusión consisten en la conversión de Hidrógeno (H) en Helio (He). Un átomo de H está formado por un protón en el núcleo y un electrón a su alrededor. Un átomo de He tiene dos protones y dos neutrones en el núcleo y dos electrones a su alrededor. Las temperaturas que se alcanzan en el interior de una estrella hacen que los átomos estén totalmente ionizados, es decir, que los electrones no estén ligados a los núcleos y estén circulando por la estrella sin ligarse a los núcleos atómicos. Por tanto, las reacciones nucleares de fusión tengan lugar entre los núcleos de H para dar núcleos de He. Pero si un núcleo de H tiene un protón y un núcleo de He tiene dos protones y dos neutrones, ¿cómo es posible convertir que si se fusionan dos núcleos de H se produzca un núcleo de He? Si contamos, al principio tenemos dos protones (dos núcleos de H) y terminamos con dos protones y dos neutrones (un núcleo de He).

La explicación es que es imposible que simplemente a partir de dos núcleos de H se forme uno de He. Se necesitan más de dos núcleos de H y no es posible convertir el H en He directamente sino paso a paso en lo que se conoce como cadena protón-protón (o cadena pp). Además los procesos de fusión nuclear dependen muy fuertemente de las condiciones de presión y temperatura en el interior de la estrella, por lo que, dependiendo de éstas, podemos tener tres tipos de cadenas pp. Veamos cuáles son:

  • Cadena ppI:

1H + 1H -> 2H + e+

2H + 1H -> 3He

3He + 3He -> 2 1H + 4He

En estas reacciones vemos que el H y el He tiene unos superíndices a la izquierda. Estos superíndices indican el número másico, es decir, la suma del número de protones y neutrones que hay en el núcleo. El símbolo e+ indica un positrón (antipartícula del electrón). Cuando aparece un positrón, quiere decir que un protón se ha desintegrado, vía desintegración beta, y se convierte en un neutrón. De ahí que en la segunda reacción veamos un 2H, es decir un núcleo de hidrógeno con un protón y un neutrón. Este neutrón es el responsable de que el He pueda tener neutrones en su núcleo a partir de núcleos de H que no tienen neutrones. A este núcleo de H con un protón y un neutrón se le conoce como deuterio. Quedaos con el deuterio ya que volveremos a hablar de él más tarde.

  • Cadena ppII:

3He + 4He -> 7Be

7Be + e- -> 7Li

7Li + 1H -> 2 4He

Aquí aparecen 7Be y 7Li que son respectivamente un isótopo de berilio y uno de Litio.

  • Cadena ppIII:

3He + 4He -> 7Be

7Be + 1H -> 8B

8B -> e+ + 8Be

8Be -> 2 4He

Aquí también tenemos 8B que es un isótopo del Boro.

En estas reacciones, además de los productos de fusión se emiten neutrinos como consecuencia de las desintegraciones de cada núcleo y fotones, es decir, radiación. Partiendo de núcleos de hidrógeno, hemos llegado a un núcleo de He y hemos obtenido luz. La estrella ya es una esfera autogravitante de gas que emite luz y es, por lo tanto, un estrella.

En el origen del universo, en la nucleosíntesis primordial, se formó mucho H y He, aunque también pequeñas trazas de elementos más pesados como Li y Be. De ahí que pudieran formarse estrellas, a través de agrupaciones de masa sometidas a la fuerza de la gravedad que dieran lugar a los procesos de fusión nuclear a través de las cadenas pp. Estas estrellas, se conocen con el nombre de estrellas de tercera generación. Estas estrellas eran muy masivas y evolucionaron muy rápidamente hasta consumir todo el hidrógeno y terminar como explosiones de supernova. Por procesos sucesivos de fusión durante la vida de la estrella se van generando elementos más pesados como Carbono (C), Nitrógeno (N), oxígeno (O) y así sucesivamente hasta llegar a más pesados como el Hierro (Fe). En una explosión de supernova, estos elementos se incorporan al medio interestelar y se unen a las nubes moleculares de gas que darán lugar a nuevas estrellas. Estas nuevas estrellas incorporarán en su gas estos elementos, por lo que también pueden participar de las reacciones de fusión para convertir H en He.

En efecto, en estrellas más jóvenes, como es el caso de nuestro Sol (que se considera una estrella de primera generación), además de las cadenas pp la generación de He a partir de H se da también por el conocido cicle del carbono o ciclo CNO. En este ciclo, el C, N y O intervienen en la fusión de H para convertir cuatro núcleos de H en un núcleo de He, de dos maneras diferentes:

12C + 1H -> 13N

13N -> e+ +13C

13C + 1H -> 14N

14N + 1H -> 15O

15O -> e+ + 15N

15N + 1H -> 4He + 12C

Vemos que se forma He y además volvemos a recuperar el 12C que teníamos inicialmente.

La otra rama del ciclo CNO es la siguiente:

15N + 1H -> 16O

16º + 1H -> 17F

17F -> e+ +17O

17O+ 1H -> 4He + 14N

Aquí además vemos que se forma Fluor (F). Aquí también, se emiten fotones y neutrinos en los sucesivos pasos, por lo que también se genera luz que hace brillar a la estrella.

Puede parecer que este ciclo es algo extravagante ya que la conversión de H en He a través de las cadenas PP son más importantes debido a que el H es el elemento más abundante del universo. Pero, lo cierto es que en estrellas cuyos núcleos tienen temperaturas algo superiores a las de nuestro Sol, ¡el ciclo CNO predomina sobre las cadenas PP!

De acuerdo, ya tenemos una esfera autogravitante de gas que emite radiación, pero ¿son todas las esferas autogravitantes de gas que emiten radiación estrellas?

Una respuesta rápida es NO. Pero hay que particularizar.

Cuando una estrella se encuentra en su fase de formación en el interior de su nube molecular (protoestrella), se encuentra sometida a la acción de su propia fuerza gravitatoria. Esta fuerza hace que se comprima el gas en su interior y se caliente, pero en sus primeras fases, la temperatura no es lo suficientemente alta como para que comiencen las reacciones de fusión nuclear de H en He y sin embargo se emita luz. Sin embargo, la clave está en el H. Si volvéis a las reacciones anteriores de las cadenas pp y el ciclo CNO veréis que el H siempre se escribe como 1H. También os he pedido que recordarais el término deuterio 2H.

protoestrella

Expulsión de material en forma de Jets de una protoestrella (Fuente: IAC. 
Crédito: Patrick Hartigan/Rice University)

En una estrella, la fusión de H en He se lleva a cabo a partir de núcleos de H normal, es decir 1H. Sin embargo, en el universo hay cantidades pequeñas, pero no despreciables de 2H. Sucede que, como hemos comentado antes, la fusión de H requiere de unas condiciones de temperatura y presión determinadas. Para el 1H, la temperatura requerida es muy alta, mucho más que para el 2H.

El 2H tiene un protón y un neutrón, por lo tanto si dos núcleos de 2H se fusionan, podemos tener un núcleo de 4He en un solo paso ya que este tiene dos protones y dos neutrones. Exactamente los que tiene la suma de dos núcleos de deuterio.

En las protoestrellas la temperatura, debido a la contracción gravitatoria no es lo suficientemente alta como para fusionar 1H en su interior, pero sí lo suficiente como para fusionar 2H. Para fusionar 1H se necesitan temperaturas de diez millones de grados Celsius, para fusionar 2H basta con que se alcancen temperaturas de un millón de grados Celsius.

En esta fusión de deuterio se emite luz que es, precisamente, la luz que podemos observar en las protoestrellas.

Es decir tenemos una esfera autogravitante de gas que emite luz pero que no es una estrella.

Hemos llegado a una situación en la que tenemos dos tipos de esferas autogravitantes de gas que emiten luz. A un tipo de ellas podemos llamarlas estrellas y al otro no y las llamamos protoestrellas. Ocurre que una protoestrella es simplemente la fase anterior a una estrella, ¿o no?

Pues otra vez, NO. O más bien, no siempre. Para que una protoestrella pase se ser eso, una protoestrella, a ser una estrella, la temperatura en su interior debe pasar del orden de un millón de grados Celsius a diez millones de grados Celsius para poder pasar de la fusión del deuterio 2H a la fusión del hidrógeno 2H. Con la fusión del 2H la temperatura aumenta, al mismo tiempo que la contracción gravitatoria hace que la temperatura aumente también. Sin embargo, hay ocasiones en las que no se alcanzan las temperaturas de diez millones de grados Celsius necesarias para fusionar 1H.

Como hemos dicho, en la nucleosíntesis primordial al comienzo del universo y en las explosiones de supernova se forman elementos más pesados. Uno de ellos es el Litio. Resulta que el Litio, necesita una temperatura de sólo dos millones y medio de grados Celsius para fusionarse. Cuando se alcanza esa temperatura, se emite radiación. Una esfera autogravitante de gas que tiene una temperatura superior a los dos millones y medio de grados Celsius, ya no es una protoestrella, pero tampoco es una estrella porque no está fusionando 1H. ¡Y sin embargo, emite luz! ¿Qué es esto entonces? Seguro que habéis escuchado hablar de unos objetos conocidos como enanas marrones. Pues sí, una esfera autogravitante de gas que emite luz, que no fusiona 1H y que no es una protoestrella, pero que emite luz es una enana marrón. De hecho podemos determinar cuando hemos encontrado una enana marrón observando si tiene Li o no y en que cantidad.

Enana marrón

Imagen artística de la enana marrón 2MASSJ22282889-431026 (Fuente: Wikimedia Commons)

¿Y que pasa cuando una esfera autogravitante de gas no emite luz? Aquí ni siquiera necesitamos recurrir a telescopios para observarlo. Podemos salir a la calle en una noche despejada y observar Júpiter. En efecto, tenemos un planeta, o hablando de manera más general, un objeto sub estelar. Los objetos sub estelares no han alcanzado la temperatura suficiente como para fusionar deuterio, es decir, su núcleo no llega a tener, ni siquiera, un millón de grados Celsius, y por lo tanto no puede emitir luz, simplemente es capaz de reflejar la luz que le llega desde otra estrella.

Jupiter_by_Cassini-Huygens

Júpiter visto por la sonda Cassini-Huygens

Por lo tanto, no todo lo que vemos en el cielo es una estrella y mucho menos es, lo que decía la primera definición de estrella que escuché, una esfera autogravitante de gas.

Referencias

Surdín, V.G. 2000 Formación estelar. Editorial URSS

Bohm-Vitense, E. 1992. Introduction to Stellar Astrophysics Vol.3.

Stellar Structure and Evolution. Cambridge University Press.

Supernovas y neutrinos

El neutrino es una de las partículas más misteriosa que existe. Desde que fue propuesto por Pauli en 1930, para explicar la no conservación de la energía en las desintegraciones beta, hasta que se observó y se descubrió que no sólo existía una clase de neutrino y que este podía oscilar entre los diferentes «sabores», el objetivo de los físicos de partículas ha sido entender todas sus propiedades físicas y como interacciona con otras partículas.

Se ha tratado, por tanto, de una búsqueda de conocimiento del neutrino en sí mismo.

Pero los neutrinos no sólo sirven para aumentar nuestro conocimiento respecto a la propia partícula, sino que también nos ayudan a entender el universo y como se producen algunos fenómenos tan fascinantes como son las explosiones de supernova.

This image shows the remnant of Supernova 1987A seen in light of very different wavelengths. ALMA data (in red) shows newly formed dust in the centre of the remnant. Hubble (in green) and Chandra (in blue) data show the expanding shock wave.

Resto de la supernova 1987A (Fuente: Wikipedia)

Sabemos que hay tres sabores o tipos de neutrinos: neutrinos electrónicos, neutrinos muónicos y neutrinos tau. En una explosión de supernova, no se producen todos los tipos de neutrinos al mismo tiempo y son emitidos simultáneamente al espacio con la misma energía. Muchos de estos neutrinos se producen en el colapso del núcleo de la estrella. Al menos eso es lo que se piensa a través de modelos teóricos y simulaciones ya que no entendemos muy bien la dinámica del colapso. La observación de neutrinos procedentes de supernovas, promete ser una fuente de información importante para entender el proceso que tiene lugar en el colapso del núcleo que produce la supernova.

Los neutrinos son unas partículas que interactúan muy débilmente con la materia y es altamente improbable detectar un neutrino directamente.

Debido a las características de los neutrinos emitidos en una explosión de supernova y a su distancia, un detector de estos neutrinos en la tierra tiene que cumplir una serie de características:

  • Ha de tener un umbral de detección que permita detectar neutrinos con energías muy bajas, del orden de unos pocos MeV (mega electrón voltios).
  • Ha de poder detectar todos los sabores de neutrinos.
  • Ha de tener una buena resolución energética, temporal y angular para poder medir bien las distribuciones temporales y energéticas de todos los sabores de neutrinos.

detailedPhysics_image1

Detalle de la construcción del detector HALO en SNOLab. HALO es un detector dedicado la estudio de los neutrinos procedentes de supernovas (Fuente: https://www.snolab.ca/halo/)

Uno de los principales problemas que existen a la hora de observar neutrinos es que su procedencia es muy diversa. Pueden proceder de rayos cósmicos, del Sol, de reactores nucleares o de la propia radiactividad natural. Podríamos pensar que si queremos detectar neutrinos procedentes de una supernova, deberíamos tener en cuenta todos este fondo de neutrinos adicional y quitarlo de la señal detectada de la supernova. Lo cierto es que no es tan necesario, ya que los neutrinos procedentes de la supernova llegan a la tierra en un momento determinado y durante un corto periodo de tiempo de unos 10 segundos.

Antes hemos mencionado que los neutrinos en sí mismos son difíciles de detectar directamente, entonces ¿cómo podemos detectar los neutrinos procedentes de una supernova? No buscamos los neutrinos, sino los resultados de la interacción de un neutrino con la materia.

A las energías que esperaríamos encontrar neutrinos procedentes de supernovas (menos de 100 eV) podemos tener diferentes procesos nucleares en la interacción de un neutrino con la materia.

Dispersión elástica con electrones. Un neutrino de cualquier tipo choca con un electrón y hace que tanto el electrón como el neutrino incidente modifiquen su trayectoria. Detectando el electrón podemos saber dirección del neutrino ya que el electrón es dispersado en la dirección del neutrino. La probabilidad de que ocurra este proceso es muy pequeña comparada con otros, pero cuando ocurre da información sobre la dirección que lleva el neutrino y se puede identificar donde está la fuente de neutrinos (la explosión de supernova)

Desintegración beta inversa. Este proceso se da sólo para neutrinos electrónicos. En él, un antineutrino electrónico choca contra un protón y la reacción da lugar a un neutrón y un positrón. Aquí podemos detectar como el positrón generado pierde energía y como los neutrones son capturados por otros núcleos para producir rayos gamma. Para que ocurra esta interacción la energía del neutrino tiene que estar por encima de 1.8 MeV.

Dispersión elástica con protones. Ocurre igual que en la dispersión elástica con electrones, sólo que el neutrino choca contra un protón. Tiene una probabilidad de que ocurra cuatro veces más pequeña que la desintegración beta inversa. El principal problema es que la energía de retroceso del protón cuando el neutrino choca contra él, es rápidamente eliminada por el resto del núcleo en el que se encuentra el protón y es difícil saber la dirección que lleva el neutrino.

Interacciones de corrientes cargadas. En estas interacciones, con neutrinos electrónicos, el resultado es que el neutrino incidente se convierte en su leptón (electrón o positrón) correspondiente. El neutrino choca contra un núcleo con N neutrones y Z protones, después de la colisión, el núcleo se convierte en un núcleo con N+1 neutrones y Z-1 protones. Aquí se puede detectar la pérdida de energía del leptón y además, el núcleo excitado después de la colisión puede emitir otros nucleones y rayos gamma, que sirven para identificar la interacción.

Interacciones de corrientes neutras. Aquí el neutrino (de cualquier tipo) colisiona con un núcleo y éste pasa a un estado excitado. El núcleo excitado puede emitir nucleones o rayos gamma al desexcitarse. La dispersión del núcleo en la colisión tiene una energía de retroceso del orden de los keV (kilo electrón voltios) lo cual queda fuera del rango de detección de los detectores actuales o previstos a corto plazo.

Los neutrinos fueron, y todavía son, unas partículas misteriosas. También son misteriosos los procesos más internos que dan lugar a las explosiones de supernova. Si lo juntamos todo y le añadimos un poco de la física nuclear que conocemos tenemos casi al alcance la mano la posibilidad de entender misterios aún más grandes.

Referencias

Inés Gil-Botella. Detection of Supernova Neutrinos. arXiv:1605.02204v1

Física de astropartículas

Durante muchos siglos la única manera que teníamos de entender lo que pasaba en el universo, era a través de la luz que llegaba a nuestros ojos, ya fuera a través de la observación directa o a través de telescopios desde los tiempos de Galileo. Aunque el ojo humano es un instrumento maravilloso, existen fenómenos que el ojo no puede detectar debido a que caen fuera del rango de longitudes de onda en el que es eficaz. Muchos de estos procesos son altamente energéticos y constituyen la rama de la Astrofísica de partículas o Física de astropartículas.

La Física de astropartículas es relativamente reciente. En esencia trata de investigar todos aquellos procesos astrofísicos de alta energía.

Prácticamente comenzó su andadura en 1911 con el descubrimiento de los rayos cósmicos por Victor Hess. Los rayos cósmicos son parte de esos procesos de alta energía que suceden en el Universo pero, ¿cómo distinguir si lo que recibimos de un objeto astronómico es debido a un proceso normal o de alta energía?

Hess

Victor Franz Hess (Fuente: Dominio Público)

La mayor parte de la luz que recibimos de estrellas, nebulosas, galaxias,… se debe a procesos térmicos. Un proceso térmico es aquel en el que la radiación que medimos (no sólo visible, sino también infrarroja o ultravioleta, por ejemplo) se puede aproximar a la de un cuerpo negro. Los procesos que dan lugar a la radiación térmica comienzan en los núcleos de la estrellas. Son procesos de fusión nuclear de Hidrógeno, Helio y otros elementos más pesados que a su vez son los que dan lugar a la evolución de la propia estrella. Aunque son procesos realmente energéticos, éstos están todavía en el campo de la Física Nuclear. La energía que generan estos procesos de fusión es la responsable de la radiación que es emitida por la estrella. A su vez esta radiación incide sobre otros átomos presentes en su entorno y da lugar a la radiación (también térmica) que observamos en nebulosas y galaxias.

Sin embargo, la fundación de la radio astronomía, después de la Segunda Guerra Mundial, y la capacidad de detectar radiación en el rango de los rayos gamma, a partir de la década de los 60, contribuyeron a dejar claro que los procesos térmicos no eran los únicos que sucedían en el Universo.

Pero, pensemos un momento. Las ondas de radio forman parte del espectro electromagnético al igual que la luz visible, infrarroja y ultravioleta, ¿cómo es posible que la radio astronomía contribuyera al desarrollo de la Física de astropartículas?

1225189037_magic

Uno de los dos telescopios MAGIC de 17 metros en La Palma (Credito: Robert Wagner, MPI de  Física, Munich / ASPERA).

Vamos a recordar lo que hablamos sobre el índice espectral aquí. Si la radiación emitida por una radio fuente dependiera de la frecuencia como ν2, ésta tendría un origen térmico ya que la distribución de energía tendría la forma de la aproximación de Rayleigh-Jeans, que se deriva de considerar la ecuación de la distribución de energía de Planck para bajas frecuencias (precisamente las que corresponden a las ondas de radio). Sin embargo, no se observa esta dependencia con la frecuencia, sino algo del tipo ν-0.5. Esto quiere decir que la radiación observada no es de origen térmico. En un alarde de originalidad a esta radiación se le llamó no térmica. De hecho, se trata de radiación sincrotrón causada por electrones moviéndose a velocidades relativistas en el interior de un campo magnético. Es más, sabemos que es radiación sincrotrón porque es la misma que observamos en los aceleradores de partículas en la tierra cuando aceleramos partículas cargadas siguiendo una trayectoria curva en el interior de un campo magnético. De ahí su nombre.

I05-06-synchrotron

Generación de radiación sincrotrón (izquierda) y comparación entre radiación térmica y no térmica (derecha) (Fuente)

A pesar de que la radiación observada (ondas de radio) es la que menos energía tiene de todo el espectro electromagnético, ésta es provocada por procesos de alta energía, que generan radiación no térmica, propios del campo de estudio de la Física de astropartículas.

Esta radiación se ha observado, por ejemplo, en restos de supernova, dejando claro lo altamente energéticas que son las explosiones de supernova.

Pero no sólo las ondas de radio nos dan pruebas de los procesos físicos de alta energía que ocurren en el Universo. También las radiaciones más energéticas, como los rayos X o los rayos gamma, son una prueba de ello.

En los laboratorios en tierra podemos estudiar la distribución de energía que tienen los procesos de dispersión de Compton y dispersión de Compton inversa. En la dispersión de Compton inversa los fotones adquieren energía en la retro dispersión de electrones cuando chocan con ellos. Para que esto ocurra, los electrones se tienen que estar moviendo a velocidades muy altas. Si al observar un objeto astronómico medimos, en el rango de los rayos X o de los rayos gamma, una distribución de energía que se corresponde con una distribución de energía de una dispersión de Compton inversa, podemos decir que existen procesos de alta energía, y de nuevo volvemos a entrar en el ámbito de la Física de astropartículas.

A veces, los procesos que generan radiación sincrotrón y los que generan dispersión de Compton inversa se unen para dar lugar a una combinación de ondas de radio y radiación más energética, ya sea en el rango de rayos X, de rayos gamma o ambos a la vez. Imaginemos la siguiente situación. Tenemos electrones moviéndose a gran velocidad en un campo magnético y por lo tanto se está emitiendo radiación sincrotrón que podemos medir usando técnicas de radioastronomía. Los fotones que se producen en la radiación sincrotrón, se encuentran con otros electrones relativistas y se produce dispersión de Compton inversa. El resultado es que el fotón inicial adquiere más energía, emitiendo, por tanto, también rayos X y/o rayos gamma.

Hasta ahora, hemos visto que los procesos de alta energía que se producen en algunos objetos astronómicos se deben a electrones relativistas, es decir, electrones que se están moviendo a velocidades próximas a la de la luz. Pero también observamos rayos cósmicos de una energía extremadamente alta que demuestran que no sólo los electrones son acelerados hasta altas energías, sino que también las partículas compuestas (hadrones), como los protones, también son aceleradas. La distribución de energía de estos protones sería diferente. Los protones interaccionarían con el gas con el que se encuentren en su camino y daría lugar a piones neutros (una partícula compuesta por un quark y un antiquark u o por un quark y un antiquark d). A su vez el pion neutro se desintegraría en dos fotones de alta energía (rayos gamma) con un espectro diferente al de la dispersión de Compton inversa. También podría pasar que la interacción diera lugar a piones cargados (compuestos por un quark u y un antiquark d o viceversa). La desintegración de estos piones cargados generaría neutrinos con una energía muy alta. Lo complicado de todo esto, es que aunque se han observado neutrinos de muy alta energía, no se han podido asociar a ninguna fuente puntual, es decir, a un objeto astronómico, por lo que no podemos conocer su origen.

trackUnderIcl_straightView_horiz

Uno de los eventos producidos por un neutrino de muy alta energía superpuesto a una imágen del laboratorio Ice Cube en el Polo Sur. (Crédito: Colaboración Ice Cube)

Quedan muchas preguntas por responder en el campo de la Física de astropartículas. Queda mucho por investigar para poder identificar los objetos astronómicos que producen las astropartículas y poder llegar a conocer el Universo en detalle. Pero no debemos olvidar que la Física de astropartículas es todavía una rama de la ciencia muy joven y todavía le queda mucho camino por recorrer.

Referencias

Particle Astrophysics. Susan Cartwright

Evolución de galaxias

Imaginad dos pueblos pequeños. Esos pueblos están separados por pocos kilómetros de distancia. Por cualquier motivo, la población de esos pueblos aumenta poco a poco. Entonces se empiezan a construir más y más casas hasta que llega un punto en el que los dos pueblos entran en contacto. Al final, la morfología de los pueblos se ha modificado debido a la interacción entre ellos y se ha creado una pequeña ciudad. Según esa pequeña ciudad vaya se vaya extendiendo hasta entrar en contacto con otros pueblos se convertirá, cada vez más, en una gran ciudad, de manera que todas las partes de la ciudad interaccionan unas con otras de una u otra manera.

Ahora vamos al espacio. Tenemos una galaxia elíptica y una espiral separadas por una distancia lo suficientemente corta como para que la interacción gravitatoria entre ellas sea notable. La galaxia elíptica, debido a la atracción gravitatoria que ejerce sobre la espiral hace que la forma de la galaxia espiral se modifique. Puede que, debido a la masa de una de ellas, las galaxias se atraigan con tanta fuerza que terminen colisionando. También puede ocurrir que la masa sea muy grande pero no lo suficiente como para que terminen fusionándose. Lo que ocurrirá en este caso es que la forma de las galaxias cambiará tanto que la galaxia elíptica será más elíptica aún y que la espiral comience a parecerse más a una elíptica.

Los cúmulos galácticos son agrupaciones de galaxias que están ligadas gravitatoriamente. En los cúmulos de galaxias todas las galaxias están interaccionando gravitatoriamente. Habrá galaxias menos masivas con una determinada forma que interaccionarán con galaxias más masivas y cuyo resultado será una nueva galaxia con otra determinada forma.

Cúmulo Abell 2218 (Fuente: Wikipedia)

Sin embargo, el entorno de un cúmulo galáctico hace que la forma, debido a la interacción gravitatoria, no sea la única característica que se ve afectada. Las galaxias, sus interacciones y su entorno definen la ecología de ese cúmulo galáctico.

La interacción gravitatoria provoca una redistribución de las masas, de las estrellas y, sobre todo, del gas que las compone.  El gas se concentra en las regiones más próximas a la zona donde está teniendo lugar la colisión y genera estallidos de formación estelar. La formación estelar lleva asociada un aumento de la radiación ultravioleta, debido al aumento de la temperatura en la zona donde se han formado nuevas estrellas. Esta radiación genera vientos que desplazan el material a su alrededor provocando cambios en la morfología.

Colisión de las galaxias NGC 4038 y NGC 4039 con brotes de formación estelar (Fuente: Wikipedia)

Las galaxias también pueden tener un núcleo activo. En ese caso, el núcleo estará emitiendo rayos X y la radiación afecta al entorno, por ejemplo ionizando el medio y provocando, también, vientos que desplacen el material de la propia galaxia o de las circundantes.

Por otro lado, la población de una galaxia la componen las estrellas. Las estrellas nacen, crecen, mueren y se reproducen. Esto quiere decir que cada galaxia tendrá poblaciones estelares de una determinada edad. A mayor edad, las estrellas tendrán un color más rojizo. A menor edad las estrellas serán azuladas. Por ello una galaxia muy evolucionada, tendrá un color rojo, mientras que una joven será más azulada.

¿Y como podemos obtener toda esta información? Lo primero que hay que dejar claro es que mirar directamente por un telescopio no es la mejor idea. Ni siquiera los astrónomos profesionales lo hacen (salvo usando telescopios pequeños, por afición y en su tiempo libre). Necesitamos recoger toda la información posible para poder estudiar el entorno de un cúmulo de galaxias. Esto se hace con detectores acoplados a los telescopios.

El detector más conocido es la cámara fotográfica. Una cámara (basada en un dispositivo CCD como el de la cámara de tu móvil) es muy útil, pero sólo si la información que estamos buscando se concentra en el rango de luz visible. Cuando se recoge información en luz visible, podemos obtener información relativa a la morfología de las galaxias, tamaños e incluso detectar lentes gravitacionales.

An interesting galaxy has been circled in this NASA/ESA Hubble Space Telescope image. The galaxy — one of a group of galaxies called Luminous Red Galaxies — has an unusually large mass, containing about ten times the mass of the Milky Way. However, it’s actually the blue horseshoe shape that circumscribes the red galaxy that is the real prize in this image. This blue horseshoe is a distant galaxy that has been magnified and warped into a nearly complete ring by the strong gravitational pull of the massive foreground Luminous Red Galaxy. To see such a so-called Einstein Ring required the fortunate alignment of the foreground and background galaxies, making this object’s nickname “the Cosmic Horseshoe” particularly apt. The Cosmic Horseshoe is one of the best examples of an Einstein Ring. It also gives us a tantalising view of the early Universe: the blue galaxy’s redshift — a measure of how the wavelength of its light has been stretched by the expansion of the cosmos — is approximately 2.4. This means we see it as it was about 3 billion years after the Big Bang. The Universe is now 13.7 billion years old. Astronomers first discovered the Cosmic Horseshoe in 2007 using data from the Sloan Digital Sky Survey. But this Hubble image, taken with the Wide Field Camera 3, offers a much more detailed view of this fascinating object. This picture was created from images taken in visible and infrared light on Hubble’s Wide Field Camera 3. The field of view is approximately 2.6 arcminutes wide.

Efecto lente gravitacional (Fuente: ESA/Hubble & NASA)

Si además entre el espejo secundario del telescopio y la cámara fotográfica ponemos diferentes filtros podemos estudiar la fotometría de las galaxias (la cantidad de luz emiten), calcular la masa de las galaxias y su distribución espectral.

Si, en lugar de tener una cámara capaz de obtener imágenes en el rango de luz visible, utilizamos un detector que pueda detectar luz infrarroja, podemos ver a través del polvo de la galaxia y observar los fenómenos de formación estelar.

Para ver la actividad de los núcleos galácticos tenemos que salir de las limitaciones que nos impone la atmósfera y observar con telescopios capaces de detectar los rayos X o la radiación ultravioleta, que también nos ayuda a detectar las regiones de formación estelar.

Ilustración del telescopio de Rayos X Chandra (Fuente: Wikipedia)

Realizar observaciones en radio utilizando radiotelescopios también es importante a la hora de caracterizar galaxias de radio o para estudiar la formación estelar ya que podemos determinar qué tipo de moléculas componen el medio que da lugar a la formación de estrellas.

Todo el entorno de una galaxia influye en su evolución. Si queremos aprender cómo evolucionan, tenemos que estudiar las galaxias en todos los entornos que podamos, ya sean galaxias aisladas, en cúmulos galácticos poco poblados o muy densos. Además, tenemos que estudiar todos los posibles tipos de galaxias, ya sean enanas o masivas, elípticas o irregulares y, en esas galaxias, determinar todas sus propiedades como la forma, el color, si tienen formación estelar o, incluso, la distribución de materia oscura.

Por último, si queréis saber más sobre galaxias, su evolución y los temas actuales en los que se investiga en España, os dejo un vídeo editado por el Instituto de Astrofísica de Canarias que se titula, precisamente, «Galaxias».

Referencias

Alan Dressler. Galaxy morphology in Rich Clusters: Implications for the formation and evolution of galaxies. The Astrophysical Journal, 236:351-365, 1980 March 1

Meghan E. Gray, Christian Wolf et al. STAGES: the Space Telescope A901/2 Galaxy Evolution Survey. Mon. Not. R. Astron. Soc. 393, 1275-1301, 2009

Luminiscencia nocturna (Airglow)

Vivimos en un planeta que está rodeado por una fina capa de gases que nos separa del espacio. La atmósfera.

Es cierto que sin atmósfera no podríamos vivir. Para llevar a cabo la mayoría de los procesos biológicos, los seres vivos, y en especial los seres humanos, necesitamos oxígeno. El oxígeno se encuentra en la atmósfera. Forma parte de su composición junto con otros gases como el nitrógeno, ozono, vapor de agua, dióxido de carbono y otros muchos gases en concentraciones menores. Sin embargo, en astronomía la atmósfera se considera un estorbo.

Por un lado la atmósfera se calienta durante el día y crea corrientes de aire. Ese aire genera inestabilidades y provoca que el paso de la luz de las estrellas a su través, en su camino hacia nuestros ojos o telescopios, titile. Ese ligero temblor que observamos en la estrella es molesto a la hora de observar, ya que hace que la estrella o el objeto en cuestión pierda definición.

La atmósfera también tiene una extensión. Tiene más de 100 km de altura, aunque la mitad de su masa – unos 5,1×1018 kg – se encuentra en los primeros 6 km de altura. Esta extensión hace que la luz que emitimos desde la tierra se disperse y genere uno de los mayores problemas con los que se encuentren los astrónomos: la contaminación lumínica.

Pero la atmósfera también nos proporciona algunos de los fenómenos nocturnos más bonitos que podemos observar. Uno de ellos, quizá el más conocido, son las auroras.

Sin embargo, existe otro fenómeno menos conocido y que, quizá por su baja intensidad y la contaminación lumínica, pocos han observado y disfrutado: la luminiscencia nocturna o airglow.

La luminiscencia nocturna hace que el cielo nunca esté completamente oscuro, aunque dependiendo de las condiciones, hay momentos en los que estará más o menos oscuro.

Durante el día, el sol calienta la atmósfera, es decir, calienta los gases que la componen. Los gases están formados por átomos y moléculas. La radiación del sol, transporta energía, en el rango de frecuencias del ultravioleta, y ésta incide sobre los átomos provocando una fotoionización. La fotoionización consiste simplemente en que un electrón del átomo recibe la energía suficiente como para que se separe del átomo, dejando el átomo ionizado. Por la noche, la radiación solar deja de incidir y los átomos ionizados y los electrones se recombinan. En la recombinación, se emite un fotón. Es decir, luz que que percibimos como luminiscencia nocturna.

La luz del sol no es la única radiación que puede generar esta ionización y posterior recombinación. La tierra está continuamente sujeta al impacto de rayos cósmicos. Los rayos cósmicos impactan contra los gases de la atmósfera e ionizan los átomos que los componen. Durante la recombinación se emite de nuevo un fotón, que contribuye a la luminiscencia nocturna.

Por último, existe otra manera de generar esta luminiscencia, por procesos químicos. Este proceso se conoce como quimioluminiscencia, en el que en ciertas reacciones químicas entre los gases de la atmósfera (por ejemplo, en la reacción del oxígeno y hidrógeno con un grupo hidroxilo) se emiten fotones de luz visible.

Los que vivimos en ciudades muy contaminadas lumínicamente no somos capaces de observar este fenómeno. Además debido a su baja intensidad, puede pasar desapercibido incluso en lugares muy poco iluminados. Una de las mejores maneras de observarlo es fotografiándolo, ya que podemos utilizar exposiciones largas para integrar la mayor cantidad de luz posible.

Si unimos cielos poco iluminados y buenas fotografías, estamos hablando de las Islas Canarias y de Daniel López (@cielodecanarias, El cielo de canarias) que además de ser un gran fotógrafo, realiza unos timelapses impresionantes, como el que pongo a continuación. La luminiscencia nocturna se puede apreciar como una luz en tonos verdes en el video. Os recomiendo que veáis el video en la oscuridad, a pantalla completa, con el volumen muy alto y ¡que lo disfrutéis!

Estrellas variables y el método de Argelander

Muchos son los que piensan que la astronomía es una ciencia apasionante pero dura. Además, muchos piensan que para conseguir resultados es necesario disponer de equipos caros: un gran telescopio, cámaras de alta resolución, espectrógrafos, etc.

Sin embargo, muy pocos son los que saben que se puede hacer astronomía de calidad y conseguir resultados útiles sin más equipamiento que tus propios ojos, algo para tomar notas y una estrella variable en el cielo.

Las estrellas variables son aquellas cuya luminosidad varía con el tiempo. Los cambios de luminosidad en una estrella se puede deber a muchas causas, como por ejemplo geométricas – dos estrellas orbitando la una a la otra y eclipsándose entre ellas – o intrínsecas – cambios físicos en la propia estrella. Una estrella variable es en la que los cambios de luminosidad se deben a los cambios físicos en su seno.

Que una estrella cambie su luminosidad con el tiempo se refleja, para nuestros propósitos en la tierra, en un cambio de magnitud aparente. La magnitud aparente no es más que el brillo de una estrella medido en la tierra. Hipparco clasificó las estrellas en diferentes magnitudes según las observaba a simple vista, asignando magnitud 1 a las más brillantes y magnitud 6 a las que estaban en el límite de la observación a simple vista. Más adelante, en 1856, Pogson estableció que una diferencia de cinco magnitudes se corresponde con una diferencia de un factor 100 en el brillo.

Sabiendo qué es la magnitud y que en las estrellas variables su brillo cambia, y por lo tanto su magnitud, podemos hablar de cómo se puede hacer astronomía, sin necesidad de gastar mucho dinero, utilizando el método de Argelander.

Argelander

Friedrich Argelander (Fuente: Wikimedia Commons)

Friedrich Argelander fue un astrónomo nacido en 1779 en la ciudad de Klaipeda, en lo que hoy es la actual Lituania. Uno de sus logros fue desarrollar un método para calcular el brillo visual de estrellas variables.

El método se basa en la comparación visual de dos estrellas. Si una estrella a la comparamos con otra estrella b y a simple vista observamos que tienen el mismo brillo, entonces las dos estrellas son igual de brillantes. En este caso podríamos anotar lo siguiente en nuestro cuaderno de observación:

ab o ba

indicando que ambas estrellas tienen igual brillo.

Si por el contrario la estrella a (o la b) es más brillante que la estrella b (o la a), tenemos que determinar cuánto más brillante es. Si nos imaginamos poniendo las dos estrellas una al lado de la otra y, entre ambas, incluimos sólo una estrella imaginaria para tener una transición de brillo entre a y b de sólo un salto de brillo, escribiríamos lo siguiente

a1b (o b1a)

Si la diferencia de brillo entre ambas estrellas es tal que podemos imaginar dos estrellas de magnitud decreciente desde a hasta b, es decir, podemos dar dos saltos de brillo, entonces escribiríamos

a2b o (b2a)

Si necesitamos tres estrellas entonces escribiríamos a3b, y así sucesivamente.

Es cierto que este método empieza a fallar, por la dificultad que tenemos para establecer diferencias de brillo a simple vista, a partir de 4 saltos. En cambio, si podemos ayudarnos de un pequeño telescopio (aunque empecemos a gastar dinero, merece la pena) podemos obtener una mejor resolución.

De esta manera, podemos comparar una estrella variable (v) con dos estrellas, una más brillante (a) y otra menos brillante (b), que se encuentren cerca de la estrella variable dentro del mismo campo de visión. Con esta comparación, podemos calcular la magnitud aparente de la estrella variable, y aunque para ello se necesite utilizar una fórmula y algo de matemáticas básicas (sumar, restar, multiplicar y dividir), como hemos sido buenos astrónomos y hemos anotado todo lo que hemos observado, no nos costará ningún trabajo calcularla. La fórmula en cuestión es la siguiente:

Mv = ma + da(mb-ma)/(da+db)

donde

  • ma es la magnitud de la estrella más brillante que la variable. Su valor lo conocemos mirando en cualquier tabla astronómica (o en internet que es más fácil)
  • mb es la magnitud de la estrella menos brillante que la variable.
  • da son los saltos de magnitud que damos para llegar a la estrella a desde la estrella variable y que hemos anotado.
  • db son los saltos de magnitud que damos para llegar a la estrella b desde la estrella variable y que también hemos anotado.

Ahora me podríais decir que, para qué vamos a calcular la magnitud de una estrella variable, si todas las variables observables a simple vista o con un telescopio ya se han observado y calculado su magnitud.
Cygnus_constellation_map

Localización de la estrella Deneb en la constelación del Cisne. Deneb es una estrella variable (Fuente: Wikimedia Commons)

Mi respuesta seria la siguiente. Por un lado, sí, tenéis razón, pero es un verdadero placer utilizar este método, sobre todo para calcular la magnitud de una estrella variable que ya haya sido medida y cuya magnitud ya ha sido medida y descubrir, al comparar los valores, que coinciden.

Mi respuesta además incluiría lo siguiente. Este método no sólo sirve para estrellas variables. Un asteroide en rotación (y todos los asteroides están en rotación) nos muestra diferentes partes de su superficie y por lo tanto cada parte refleja diferentes cantidades de luz del sol durante su rotación, en parte debido a los materiales que forman el asteroide. A efectos prácticos es parecido a una estrella variable, ya que al reflejar diferentes cantidades de luz, su brillo cambia, y por lo tanto su magnitud, a lo largo del tiempo.

Y por supuesto, ¡asteroides hay muchos y no todos han sido descubiertos!

Podríamos utilizar un pequeño telescopio para descubrir un asteroide y calcular sus variaciones de brillo con el tiempo (también conocida como curva de luz). Y lo más importante, esta tarea la llevan a cabo, a lo largo y ancho de todo el planeta, astrónomos aficionados. Y lo mejor de todo, sus resultados aparecen publicados en artículos en diferentes revistas especializadas en astronomía y son utilizados por otros astrónomos aficionados y profesionales para diferentes propósitos.

Así que si quieres, con muy poco dinero, puedes convertirte en un astrónomo aficionado y contribuir al avance de la astronomía profesional.

Referencias

Astrofísica. Manuel Rego y María José Fernández. Eudema Universidad/Textos de apoyo

On the observation of variable stars. Paul S. Yendell. NASA Astrophysics Data System

Obteniendo el periodo de rotación de asteroides. Amadeo Aznar, Alfonso Carreño, Gonzalo Fornas. Astronomía magazine. Nº 199. Enero 2016